Time filter

Source Type

Chen H.,Nanjing University of Information Science and Technology | Zhang Y.,Hebei Provincial Meteorological Observatory | Yu M.,Nanjing University of Information Science and Technology | Hua W.,Nanjing University of Information Science and Technology | And 3 more authors.
Climate Dynamics | Year: 2015

Impacts of large-scale urbanization over eastern China on East Asian summer monsoon circulation and climate are investigated by comparing three 25-year climate simulations with and without incorporating modified land cover maps reflecting two different idealized large-scale urbanization scenarios. The global atmospheric general circulation model CAM4.0 that includes an urban canopy parameterization scheme is employed in this study. The large-scale urbanization over eastern China leads to a significant warming over most of the expanded urban areas, characterized by an increase of 3 K for surface skin temperature, 2.25 K for surface air temperature, significant warming of both daily minimum and daily maximum air temperatures, and 0.4 K for the averaged urban–rural temperature difference. The urbanization is also accompanied by an increase in surface sensible heat flux, a decrease of the net surface shortwave and long-wave radiation, and an enhanced surface thermal heating to the atmosphere in most Eastern Asia areas. It is noted that the responses of the East Asian summer monsoon circulation exhibits an evident month-to-month variation. Across eastern China, the summer monsoon in early summer is strengthened by the large-scale urbanization, but weakened (intensified) over southern (northern) part of East Asia in late summer. Meanwhile, early summer precipitation is intensified in northern and northeastern China and suppressed in south of ~35°N, but late summer precipitation is evidently suppressed over northeast China, the Korean Peninsula and Japan with enhancements in southern China, the South China Sea, and the oceanic region south and southeast of the Taiwan Island. This study highlights the evidently distinct month-to-month responses of the monsoon system to the large-scale urbanization, which might be attributed to different basic states, internal feedbacks (cloud, rainfall) as well as a dynamic adjustment of the atmosphere. Further investigation is required to understand the dynamic mechanisms by which a large-scale urbanization in China affects eastern Asian climate and summer monsoon circulation, especially possible internal feedbacks relevant to the sub-seasonal changes of the monsoon system. © 2015 Springer-Verlag Berlin Heidelberg

Discover hidden collaborations