Entity

Time filter

Source Type


Zhao T.,Hebei Medical University | Zhang X.,Hebei Medical University | Zhang X.,Hebei Collaborative Innovation Center for Cardio cerebrovascular Disease | Zhang X.,Hebei Key Laboratory for Neurology | And 8 more authors.
Neurochemical Research | Year: 2014

Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Evodiamine (Evo) has been proved to elicit a variety of biological effects through its anti-inflammatory property in the treatment of infectious disease, Alzheimer's disease and hypoxia-induced inflammatory response. Whether this protective effect applies to cerebral ischemic injury, we therefore investigated the potential neuroprotective role of Evo and the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and randomly divided into five groups: Sham (sham-operated + 1 % DMSO + 0.5 % tween80), pMCAO (pMCAO + 0.9 % saline), Vehicle (pMCAO + 1 % DMSO + 0.5 % tween80), Evo-L (Vehicle + Evo 50 mg/kg) and Evo-H (Vehicle + Evo 100 mg/kg) groups. Evo was administered intragastrically twice daily for 3 days, and once again 30 min before mouse brain ischemia was induced by pMCAO. Neurological deficit, brain water content and infarct size were measured at 24 h after stroke. The expression of pAkt, pGSK3β, NF-κB and claudin-5 in ischemic cerebral cortex was analyzed by western blot and qRT-PCR. Compared with Vehicle group, Evo significantly ameliorated neurological deficit, brain water content and infarct size, upregulated the expression of pAkt, pGSK3β and claudin-5, and downregulated the nuclear accumulation of NF-κB (P < 0.05). Evo protected the brain from ischemic damage caused by pMCAO; this effect may be through upregulation of pAkt, pGSK3β and claudin-5, and downregulation of NF-κB expression. © 2014 Springer Science+Business Media. Source


Bai X.,Hebei Medical University | Zhang X.,Hebei Medical University | Zhang X.,Hebei Collaborative Innovation Center for Cardio cerebrovascular Disease | Zhang X.,Hebei Key Laboratory for Neurology | And 6 more authors.
Neurochemical Research | Year: 2014

Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague-Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG's influence on blood-brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression. © 2014 Springer Science+Business Media. Source


Zhang L.,Hebei Medical University | Yang J.,Hebei Medical University | Tian Y.-M.,Hebei Medical University | Guo H.,Hebei Medical University | And 2 more authors.
Chinese Journal of Physiology | Year: 2015

As human umbilical cord mesenchymal stem cells (hUC-MSCs) transplanation may be promising in heart failure treatment, it is important to know whether hypoxic preconditioning (HP) promote hUC-MSCs proliferation and differentiation and protect them against chemical hypoxic damages. This study aimed to investigate the effects of HP on proliferation and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The study also aimed to confirm our hypothesis that HP could promote hUC-MSCs proliferation and differentiation to cardiomyocyte-like cells as well as effectively protecting hUC-MSCs and cardiomyocyte-like cells against chemical hypoxic damages. Isolated hUCMSCs were cultured in hypoxia at 1%, 3% and 5% O2 for 72 hours. 5-azacytidine (5-AZA) induced differentiation of hUC-MSCs to cardiomyocyte-like cells was determined by streptavidin-perosidase (SP) immunohistochemical staining and the content of troponin (TnI). Flow cytometry was used to measure cell cycle in hUC-MSCs and cardiomyocyte-like cells. The mitochondrial membrane potential (ΔΨm) and mitochondrial Ca2+ concentration ([Ca2+]m), were measured in hUC-MSCs and cardiomyocyte-like cells during chemical hypoxia induced by cobalt chloride (100 μmol/L). HP optimally promoted the proliferation of hUC-MSCs at 3% O2 and enhanced the differentiation of hUC-MSCs to cardiomyocytelike cells by 5-AZA in a concentration-dependent manner. The cell cycle distribution of cardiomyocytelike cells, but not hUC-MSCs, was clearly changed by HP. Chemical hypoxic damage, decreased ΔΨm and increased [Ca2+]m, were alleviated significantly in HP-treated cells compared with the normaxiatreated cells. The results demonstrate that HP promoted hUC-MSCs proliferation and differentiation to cardiomyocyte-like cells, and protected both cell types against chemical hypoxic damage. © 2015 by The Chinese Physiological Society and Airiti Press Inc. Source


Guo Z.,Hebei Medical University | Liu Y.-X.,Hebei Medical University | Yuan F.,Hebei Medical University | Ma H.-J.,Hebei Medical University | And 3 more authors.
Clinical and Experimental Pharmacology and Physiology | Year: 2015

Emerging evidence has indicated that anandamide (AEA) is able to stimulate vasorelaxation in both spontaneously hypertensive rats (SHRs) and L-NAME-induced hypertensive rats. Yet it remains unknown whether AEA modulates vasomotion of the aorta in renovascular hypertensive (RVH) rats. The aim of present study is to explore the effect of AEA on the relaxation of thoracic aortas in two-kidney one-clip (2K1C)-induced RVH rats. It is demonstrated that AEA stimulates a pronounced relaxation in the aortas of 2K1C rats compared with sham rats. The enhanced relaxation caused by AEA in aortas from 2K1C rats was diminished in the presence of the cannabinoid receptor-1 (CB1) antagonist AM251 and the CB2 receptor antagonist AM630. Likewise, the vasodilation action of AEA was blocked in L-NAME-treated or endothelium-denuded aortas. The Western blot results revealed that the expression of CB1 and CB2 receptors was increased in the 2K1C rat aortas compared with sham rats. The phosphorylation of endothelial nitric oxide synthase (p-eNOS) at the activation site Ser1177 was enhanced in AEA-treated rings from 2K1C rats in both time-dependent and dose-dependent manners. The augmented p-eNOS expression was inhibited by the co-treatment with AM251 or AM630. Taken together, the present study demonstrated that AEA enhanced endothelium-dependent aortic relaxation through activation of both CB1 and CB2 receptors and P-eNOS/NO pathway in 2K1C rats. © 2015 Wiley Publishing Asia Pty Ltd. Source


Yang R.,Hebei Medical University | Teng X.,Hebei Medical University | Li H.,Hebei Medical University | Xue H.-M.,Hebei Medical University | And 5 more authors.
Oxidative Medicine and Cellular Longevity | Year: 2016

In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC. © 2016 Rui Yang et al. Source

Discover hidden collaborations