Redwood City, CA, United States
Redwood City, CA, United States

Time filter

Source Type

Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location.


Systems and methods are disclosed for providing personalized chemotherapy and drug delivery using computational fluid dynamics and medical imaging with machine learning from a vascular anatomical model. One method includes receiving a patient-specific anatomical model of at least one vessel of the patient and a target tissue where a drug is to be supplied; receiving patient-specific information defining the administration of a drug; deriving patient-specific data from the patient specific anatomical model and/or the patient; determining one or more blood flow characteristics in a vascular network leading to the one or more locations in the target tissue where drug delivery data will be estimated or measured, using the patient-specific anatomical model and the patient-specific data; and computing drug delivery data at the one or more locations in the target tissue using transportation, spatial, and/or temporal distribution of the drug particles.


Systems and methods are disclosed herein for anatomical modeling using information obtained during a medical procedure, whereby an initial anatomical model is generated or obtained, a correspondence is determined between the initial model and additional data and/or measurements from an invasive or noninvasive procedure, and, if a discrepancy is found between the initial model and the additional data, the anatomical model is updated to incorporate the additional data and reduce the discrepancy.


Systems and methods are disclosed for controlling image annotation. One method includes acquiring a digital representation of image data and generating a set of image annotations for the digital representation of the image data. The method also may include determining an association between members of the set of image annotations and generating one or more groups of members based on the association. A representative annotation from the one or more groups may also be determined, presented for selection, and the selection may be recorded in memory.


Systems and methods are disclosed for to determining a blood supply and blood demand. One method includes receiving a patient-specific model of vessel geometry of at least a portion of a coronary artery, wherein the model is based on patient-specific image data of at least a portion of a patients heart having myocardium; determining a coronary blood supply based on the patient-specific model; determining at least a portion of the myocardium corresponding to the coronary artery; determining a myocardial blood demand based on either a mass or a volume of the portion of the myocardium, or based on perfusion imaging of the portion of the myocardium; and determining a relationship between the coronary blood supply and the myocardial blood demand.


Embodiments include a system for determining cardiovascular information for a patient which may include at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of a patient; create a model representing at least a portion of the anatomical structure; create a physics-based model relating to a blood flow characteristic within the anatomical structure; determine a first blood flow rate at at least one point of interest in the model; modify the model; determine a second blood flow rate at a point in the modified model corresponding to the at least one point of interest in the model; and determine a fractional flow reserve value as a ratio of the second blood flow rate to the first blood flow rate.


Systems and methods are disclosed for assessing organ and/or tissue transplantation by estimating blood flow through a virtual transplant model by receiving a patient-specific anatomical model of the intended transplant recipient; receiving a patient-specific anatomical model of the intended transplant donor, the model including the vasculature of the organ or tissue that is intended to be transplanted to the recipient; constructing a unified model of the connected system post transplantation, the connected system including the transplanted organ or tissue from the intended transplant donor and the vascular system of the intended transplant recipient; receiving one or more blood flow characteristics of the connected system; assessing the suitability for an actual organ or tissue transplantation using the received blood flow characteristics; and outputting the assessment into an electronic storage medium or display.


Systems and methods are disclosed for integrating imaging data from multiple sources to create a single, accurate model of a patients anatomy. One method includes receiving a representation of a target object for modeling; determining one or more first anatomical parameters of the target anatomical object from at least one of one or more first images of the target anatomical object; determining one or more second anatomical parameters of the target anatomical object from at least one of one or more second images of the target anatomical object; updating the one or more first anatomical parameters based at least on the one or more second anatomical parameters; and generating a model of the target anatomical object based on the updated first anatomical parameters.


Systems and methods are disclosed for image reconstruction and enhancement, using a computer system. One method includes acquiring a plurality of images associated with a target anatomy; determining, using a processor, one or more associations between subdivisions of localized anatomy of the target anatomy identified from the plurality of images, and local image regions identified from the plurality of images; performing an initial image reconstruction based on image acquisition information of the target anatomy; and updating the initial image reconstruction or generating a new image reconstruction based on the image acquisition information and the one or more determined associations.


Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state.

Loading HeartFlow collaborators
Loading HeartFlow collaborators