Heart and Vascular Research Center

Medicine at, Lebanon

Heart and Vascular Research Center

Medicine at, Lebanon

Time filter

Source Type

Stan R.,Heart and Vascular Research Center | Stan R.,Norris Cotton Cancer Center | Smits N.,Heart and Vascular Research Center | Buitendijk M.,Program in Experimental and Molecular Medicine | And 8 more authors.
Developmental Cell | Year: 2012

Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels, and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding. Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries, causing a major leak of plasma proteins. This disruption results in early death of animals due to severe noninflammatory protein-losing enteropathy. Deletion of PV1 in endothelium, but not in the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. Plasmalema vesicle-associated protein (PV1) is critical for the formation of diaphragms in endothelial caveolae, fenestrae, and transendothelial channels. Using mice with loss and gain of PV1 function, Stan et al. show that the diaphragms of fenestrae are critical for the control of basal permeability, blood composition, and survival. © 2012 Elsevier Inc.


Gunn J.R.,Norris Cotton Cancer Center | Longnecker D.S.,Norris Cotton Cancer Center | Carriere C.,Norris Cotton Cancer Center | Stan R.V.,Heart and Vascular Research Center | Stan R.V.,Norris Cotton Cancer Center
Journal of Cellular and Molecular Medicine | Year: 2012

PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour-bearing mice by single-dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down-regulation by shRNAs inhibits the growth of established tumours derived from two different human pancreatic adenocarcinoma cell lines (AsPC-1 and BxPC-3). The effect observed is because of down-regulation of PV1 in the tumour endothelial cells of host origin, PV1 being specifically expressed in tumour vascular endothelial cells and not in cancer or other stromal cells. There are no differences in vascular density of tumours treated or not with PV1 shRNA, and gain and loss of function of PV1 in endothelial cells does not modify either their proliferation or migration, suggesting that tumour angiogenesis is not impaired. Together, our data argue that down-regulation of PV1 in tumour endothelial cells results in the inhibition of tumour growth via a mechanism different from inhibiting angiogenesis. © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.


Stan R.V.,Heart and Vascular Research Center | Stan R.V.,Norris Cotton Cancer Center | Sanglikar A.,Center for Comparative Medicine and Research | Ahmed Y.,Norris Cotton Cancer Center | Dmitrovsky E.,Norris Cotton Cancer Center
BMC Cancer | Year: 2013

Background: New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex.Methods: This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls.Results: Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models.Conclusions: Findings reported here uncovered deregulation of specific components of the Wnt pathway in both human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to target the Wnt pathway to combat lung cancer. © 2013 Busch et al.; licensee BioMed Central Ltd.


Oppenheim A.,Hadassah Medical School | Kuksin D.,University of Massachusetts Amherst | Norkin L.,University of Massachusetts Amherst | Stan R.V.,Heart and Vascular Research Center
Biochemical and Biophysical Research Communications | Year: 2011

Plasmalemmal vesicle associated protein (Plvap/PV1) is a structural protein required for the formation of the stomatal diaphragms of caveolae. Caveolae are plasma membrane invaginations that were implicated in SV40 virus entry in primate cells. Here we show that de novo Plvap/PV1 expression in CV-1 green monkey epithelial cells significantly reduces the ability of SV40 virus to establish productive infection, when cells are incubated with low concentrations of the virus. However, in presence of high viral titers PV1 has no effect on SV40 virus infectivity. Mechanistically, PV1 expression does not reduce the cell surface expression of known SV40 receptors such as GM1 ganglioside and MHC class I proteins. Furthermore, PV1 does not reduce the binding of virus-like particles made by SV40 VP1 protein to the CV-1 cell surface and does not impact their internalization when cells are incubated with either high or low VLP concentrations. These results suggest that PV1 protein is able to block SV40 infectivity at low but not at high viral concentration either by interfering with the infective internalization pathway at the cell surface or at a post internalization step. © 2011 Elsevier Inc.


Tkachenko E.,University of California at San Diego | Tse D.,Heart and Vascular Research Center | McGarry C.L.,Heart and Vascular Research Center | Chidlow J.,Yale University | And 5 more authors.
PLoS ONE | Year: 2012

PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to determine whether the formation of diaphragms is the only cellular role of PV1. We addressed this question by measuring the effect of complete and partial removal of structures capable of forming diaphragms on PV1 protein level. Removal of caveolae in mice by knocking out caveolin-1 or cavin-1 resulted in a dramatic reduction of PV1 protein level in lungs but not kidneys. The magnitude of PV1 reduction correlated with the abundance of structures capable of forming diaphragms in the microvasculature of these organs. The absence of caveolae in the lung ECs did not affect the transcription or translation of PV1, but it caused a sharp increase in PV1 protein internalization rate via a clathrin- and dynamin-independent pathway followed by degradation in lysosomes. Thus, PV1 is retained on the cell surface of ECs by structures capable of forming diaphragms, but undergoes rapid internalization and degradation in the absence of these structures, suggesting that formation of diaphragms is the only role of PV1. © 2012 Tkachenko et al.


Zagorchev L.,Heart and Vascular Research Center | Zagorchev L.,Philips | Oses P.,French Institute of Health and Medical Research | Oses P.,Bordeaux University Hospital Center | And 6 more authors.
Journal of Angiogenesis Research | Year: 2010

Vascular exploration of small animals requires imaging hardware with a very high spatial resolution, capable of differentiating large as well as small vessels, in both in vivo and ex vivo studies. Micro Computed Tomography (micro-CT) has emerged in recent years as the preferred modality for this purpose, providing high resolution 3D volumetric data suitable for analysis, quantification, validation, and visualization of results. The usefulness of micro-CT, however, can be adversely affected by a range of factors including physical animal preparation, numerical quantification, visualization of results, and quantification software with limited possibilities. Exacerbating these inherent difficulties is the lack of a unified standard for micro-CT imaging. Most micro-CT today is aimed at particular applications and the software tools needed for quantification, developed mainly by imaging hardware manufacturers, lack the level of detail needed to address more specific aims. This review highlights the capabilities of micro-CT for vascular exploration, describes the current state of imaging protocols, and offers guidelines and suggestions aimed at making micro-CT more accurate, replicable, and robust. © 2010 Zagorchev et al; licensee BioMed Central Ltd.

Loading Heart and Vascular Research Center collaborators
Loading Heart and Vascular Research Center collaborators