Entity

Time filter

Source Type

Shreveport, LA, United States

Song Z.,Vascular Biology and Stroke Research Laboratory | Song Z.,Huazhong University of Science and Technology | Zhu X.,Vascular Biology and Stroke Research Laboratory | Jin R.,Vascular Biology and Stroke Research Laboratory | And 8 more authors.
PLoS ONE | Year: 2014

Although TAK1 has been implicated in inflammation and oxidative stress, its roles in vascular smooth muscle cells (VSMCs) and in response to vascular injury have not been investigated. The present study aimed to investigate the role of TAK1 in modulating oxidative stress in VSMCs and its involvement in neointima formation after vascular injury. Double immunostaining reveals that vascular injury induces a robust phosphorylation of TAK1 (Thr187) in the medial VSMCs of injured arteries in wildtype mice, but this effect is blocked in CD40-deficient mice. Upregulation of TAK1 in VSMCs is functionally important, as it is critically involved in pro-oxidative and pro-inflammatory effects on VSMCs and eventual neointima formation. In vivo, pharmacological inhibition of TAK1 with 5Z-7-oxozeaenol blocked the injury-induced phosphorylation of both TAK1 (Thr187) and NF-kB/p65 (Ser536), associated with marked inhibition of superoxide production, 3-nitrotyrosine, and MCP-1 in the injured arteries. Cell culture experiments demonstrated that either siRNA knockdown or 5Z-7-oxozeaenol inhibition of TAK1 significantly attenuated NADPH oxidase activation and superoxide production induced by CD40L/CD40 stimulation. Co-immunoprecipitation experiments indicate that blockade of TAK1 disrupted the CD40L-induced complex formation of p22phox with p47phox, p67phox, or Nox4. Blockade of TAK1 also inhibited CD40L-induced NF-kB activation by modulating IKKα/β and NF-kB p65 phosphorylation and this was related to reduced expression of proinflammatory genes (IL-6, MCP-1 and ICAM-1) in VSMCs. Lastly, treatment with 5Z-7-oxozeaenol attenuated neointimal formation in wire-injured femoral arteries. Our findings demonstrate previously uncharacterized roles of TAK1 in vascular oxidative stress and the contribution to neointima formation after vascular injury. © 2014 Song et al. Source


Wang F.,Health science Center in Shreveport | Wang F.,Jilin University | Fu X.,Jilin University | Chen X.,Jilin University | And 2 more authors.
PLoS ONE | Year: 2010

The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer. © 2010 Wang et al. Source


Withaferin A (WA) is a bioactive compound derived from Withania somnifera. The antitumor activity of WA has been well studied in human cancer models; however, its chemopreventive potential is unclear. In the present study, we used the skin epidermal JB6 P+ cells, a well-established model for tumor promotion, and demonstrated that WA suppressed the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell transformation and cell proliferation. Interestingly, TPA inactivated isocitrate dehydrogenase 1 (IDH1), which was reversed by WA. Similar results were also observed in mouse skin tissue. Therefore, we focused on metabolism as the potential mechanism of action. We found that mitochondrial functions were downregulated by TPA treatment, as indicated by reduced mitochondrial membrane potential, complex I activity and mitochondrial respiration. However, all of these downregulations were inhibited by WA. In addition, we examined the levels of α-ketoglutarate, a product of IDH1, and WA blocked its reduction upon TPA treatment. Finally, we detected the lactate level as a glycolysis marker, and WA suppressed its elevation caused by tumor promoter treatment. Altogether, these results suggest that WA might exert its chemopreventive activity via inhibiting not only oncogenic activation, but also IDH1 inactivation and mitochondrial dysfunction in early tumorigenesis. © 2012 Japanese Cancer Association. Source


Li W.,Health science Center in Shreveport | Li W.,Hebei University | Nichols K.,Health science Center in Shreveport | Nathan C.-A.,Health science Center in Shreveport | Zhao Y.,Health science Center in Shreveport
Cancer Biomarkers | Year: 2013

BACKGROUND: Mitochondrial uncoupling protein 2 (UCP2) uncouples electron transport from ATP production. UCP2 has been shown to play an important role in obesity and diabetes. Interestingly, studies have demonstrated that UCP2 is up-regulated in human colon cancer samples. OBJECTIVE: In order to study the role of UCP2 in human cancers, we detected the UCP2 protein level in various human tumor tissues. METHODS: Six types of human tumor and adjacent normal tissue samples were collected and analyzed by Western blot assays to detect the levels of UCP2. RESULTS: The results showed that in the human head and neck, skin, prostate, and pancreatic tumor samples examined, the protein levels of UCP2 were significantly higher in tumor tissues than that in the adjacent normal tissues. The protein levels of UCP2 was lower in non-small cell lung tumor tissues, which is marginal significant. CONCLUSIONS: Over expression of UCP2 in certain tumors provides the rationale to speculate that UCP2 may promote tumor growth in these cancers. © 2013 - IOS Press and the authors. All rights reserved. Source


Li W.,Louisiana State University Health Sciences Center | Li W.,Hebei University | Zhang C.,Louisiana State University Health Sciences Center | Zhang C.,Qiqihar Medical University | And 8 more authors.
Cancer Prevention Research | Year: 2015

Mitochondrial uncoupling (uncouples electron transport from ATP production) has recently been proposed as a novel survival mechanism for cancer cells, and reduction in free radical generation is the accepted mechanism of action. However, there is no direct evidence supporting that uncoupling proteins promote carcinogenesis. Herein, we examined whether mitochondrial uncoupling affects mouse skin carcinogenesis using uncoupling protein 2 (UCP2) homozygous knockout and wild-type mice. The results indicate that knockout of Ucp2 significantly reduced the formation of both benign (papilloma) and malignant (squamous cell carcinoma) tumors. UCP2 knockout did not cause increases in apoptosis during skin carcinogenesis. The rates of oxygen consumption were decreased only in the carcinogen-treated UCP2 knockout mice, whereas glycolysis was increased only in the carcinogen-treated wild-type mice. Finally, the levels of metabolites pyruvate, malate, and succinate showed different trends after carcinogen treatments between the wild-type and UCP2 knockout mice. Our study is the first to demonstrate that Ucp2 knockout suppresses carcinogenesis in vivo. Together with early studies showing that UCP2 is overexpressed in a number of human cancers, UCP2 could be a potential target for cancer prevention and/or therapy. © 2015 American Association for Cancer Research. Source

Discover hidden collaborations