Time filter

Source Type

Taoyuan City, Taiwan

Weng S.-L.,National Chiao Tung University | Weng S.-L.,Mackay Medical College | Chiu C.-M.,National Chiao Tung University | Lin F.-M.,National Chiao Tung University | And 11 more authors.

Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility. © 2014 Weng et al. Source

Wang H.-M.,Taichung Veterans General Hospital | Chang T.-H.,Taipei Medical University | Lin F.-M.,National Chiao Tung University | Chao T.-H.,Taichung Veterans General Hospital | And 12 more authors.

Recently, single nucleotide polymorphisms (SNPs) located in specific loci or genes have been identified associated with susceptibility to colorectal cancer (CRC) in Genome-Wide Association Studies (GWAS). However, in different ethnicities and regions, the genetic variations and the environmental factors can widely vary. Therefore, here we propose a post-GWAS analysis method to investigate the CRC susceptibility SNPs in Taiwan by conducting a replication analysis and bioinformatics analysis. One hundred and forty-four significant SNPs from published GWAS results were collected by a literature survey, and two hundred and eighteen CRC samples and 385 normal samples were collected for post-GWAS analysis. Finally, twenty-six significant SNPs were identified and reported as associated with susceptibility to colorectal cancer, other cancers, obesity, and celiac disease in a previous GWAS study. Functional analysis results of 26 SNPs indicate that most biological processes identified are involved in regulating immune responses and apoptosis. In addition, an efficient prediction model was constructed by applying Jackknife feature selection and ANOVA testing. As compared to another risk prediction model of CRC for European Caucasians population, which performs 0.616 of AUC by using 54 SNPs, the proposed model shows good performance in predicting CRC risk within the Taiwanese population, i.e., 0.724 AUC by using 16 SNPs. We believe that the proposed risk prediction model is highly promising for predicting CRC risk within the Taiwanese population. In addition, the functional analysis results could be helpful to explore the potential associated regulatory mechanisms that may be involved in CRC development. © 2012 Elsevier B.V. Source

Chiu C.-M.,National Chiao Tung University | Huang W.-C.,National Chiao Tung University | Weng S.-L.,National Chiao Tung University | Weng S.-L.,Nursing and Management College | And 10 more authors.
BioMed Research International

Eighty-one stool samples from Taiwanese were collected for analysis of the association between the gut flora and obesity. The supervised analysis showed that the most, abundant genera of bacteria in normal samples (from people with a body mass index (BMI) ≤ 24) were Bacteroides (27.7%), Prevotella (19.4%), Escherichia (12%), Phascolarctobacterium (3.9%), and Eubacterium (3.5%). The most abundant genera of bacteria in case samples (with a BMI ≥27) were Bacteroides (29%), Prevotella (21%), Escherichia (7.4%), Megamonas (5.1%), and Phascolarctobacterium (3.8%). A principal coordinate analysis (PCoA) demonstrated that normal samples were clustered more compactly than case samples. An unsupervised analysis demonstrated that bacterial communities in the gut were clustered into two main groups: N-like and OB-like groups. Remarkably, most normal samples (78%) were clustered in the N-like group, and most case samples (81%) were clustered in the OB-like group (Fisher's P value = 1.61E-07). The results showed that bacterial communities in the gut were highly associated with obesity. This is the first study in Taiwan to investigate the association between human gut flora and obesity, and the results provide new insights into the correlation of bacteria with the rising trend in obesity. Copyright © 2014 Chih-Min Chiu et al. Source

Chung W.-H.,Drug Hypersensitivity Clinical and Research Center | Chung W.-H.,Chang Gung University | Pan R.-Y.,National Yang Ming University | Chu M.-T.,National Yang Ming University | And 7 more authors.
Journal of Investigative Dermatology

Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and 8 drug reaction with eosinophilia and systemic symptoms (DRESS)), 11 tolerant controls, and 23 healthy donors. We performed in vitro T-cell activation assays by culturing peripheral blood mononuclear cells (PBMCs) with allopurinol, oxypurinol, or febuxostat and measuring the expression of granulysin and IFN-γ in the supernatants of cultures. TCR repertoire was investigated by next-generation sequencing. Oxypurinol stimulation resulted in a significant increase in granulysin in the cultures of blood samples from SCAR patients (n=14) but not tolerant controls (n=11) or healthy donors (n=23). Oxypurinol induced T-cell response in a concentration- and time-dependent manner, whereas allopurinol or febuxostat did not. T cells from patients with allopurinol-SCAR showed no crossreactivity with febuxostat. Preferential TCR-V-β usage and clonal expansion of specific CDR3 (third complementarity-determining region) were found in the blister cells from skin lesions (n=8) and oxypurinol-Activated T-cell cultures (n=4) from patients with allopurinol-SCAR. These data suggest that, in addition to HLA-B∗58:01, clonotype-specific T cells expressing granulysin upon oxypurinol induction participate in the pathogenesis of allopurinol-induced SCAR. © 2015 The Society for Investigative Dermatology. Source

Discover hidden collaborations