Morgantown, WV, United States
Morgantown, WV, United States

Time filter

Source Type

Andon F.T.,Karolinska Institutet | Kapralov A.A.,University of Pittsburgh | Yanamala N.,Pathology and Physiology Research Branch | Feng W.,University of Pittsburgh | And 14 more authors.
Small | Year: 2013

Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O 2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials. Human eosinophil peroxidase (EPO) is able to degrade SWCNTs in vitro in the presence of H2O2. EPO is one of the major oxidant-generating enzymes present in human lungs during inflammatory states. The biodegradation of SWCNTs is evidenced also in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. These results are relevant to potential respiratory exposure to carbon nanotubes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


PubMed | Centers for Disease Control and Prevention and Health Effects Laboratory Division
Type: Journal Article | Journal: American journal of industrial medicine | Year: 2016

Obliterative bronchiolitis in former coffee workers prompted a cross-sectional study of current workers. Diacetyl and 2,3-pentanedione levels were highest in areas for flavoring and grinding/packaging unflavored coffee.We interviewed 75 (88%) workers, measured lung function, and created exposure groups based on work history. We calculated standardized morbidity ratios (SMRs) for symptoms and spirometric abnormalities. We examined health outcomes by exposure groups.SMRs were elevated 1.6-fold for dyspnea and 2.7-fold for obstruction. The exposure group working in both coffee flavoring and grinding/packaging of unflavored coffee areas had significantly lower mean ratio of forced expiratory volume in 1 s to forced vital capacity and percent predicted mid-expiratory flow than workers without such exposure.Current workers have occupational lung morbidity associated with high diacetyl and 2,3-pentanedione exposures, which were not limited to flavoring areas.


Selvaraj V.,Marshall University | Nepal N.,Marshall University | Rogers S.,Marshall University | Manne N.D.P.K.,Marshall University | And 8 more authors.
Biomaterials | Year: 2015

Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis. © 2015 Elsevier Ltd.


Shvedova A.A.,Health Effects Laboratory Division | Shvedova A.A.,West Virginia University | Tkach A.V.,Health Effects Laboratory Division | Kisin E.R.,Health Effects Laboratory Division | And 9 more authors.
Small | Year: 2013

Metastatic establishment and growth of Lewis lung carcinoma is promoted by single-walled carbon nanotubes (SWCNT) in C57BL6/J mice. The effect is mediated by increased local and systemic accumulation of myeloid-derived suppressor cells (MDSC), as their depletion abrogated pro-tumor activity in vivo. These data are important for the design of novel theranostics platforms with modules capable of depleting or functionally suppressing MDSC to ensure effective immunosurveillance in the tumor microenvironment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Mercer R.R.,Health Effects Laboratory Division | Mercer R.R.,West Virginia University | Scabilloni J.F.,Health Effects Laboratory Division | Hubbs A.F.,Health Effects Laboratory Division | And 8 more authors.
Particle and Fibre Toxicology | Year: 2013

Background: Prior studies have demonstrated a rapid and progressive acute phase response to bolus aspiration of multi-walled carbon nanotubes (MWCNTs). In this study we sought to test the hypothesis that inhalation exposure to MWCNT produces a fibrotic response and that the response is chronically persistent. To address the hypothesis that inhaled MWCNTs cause persistent morphologic changes, male C57BL/6 J mice were exposed in a whole-body inhalation system to a MWCNT aerosol and the fibrotic response in the alveolar region examined at up to 336 days after termination of exposure.Methods: Inhalation exposure was to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks). At the end of inhalation exposures, lungs were either lavaged for analysis of bronchoalveolar lavage (BAL) or preserved by vascular perfusion of fixative while inflated with air at 1, 14, 84, 168 and 336 days post inhalation exposure. Separate, clean-air control groups were also studied. Light microscopy, enhanced darkfield microscopy and field emission electron microscopy (FESEM) of tissue sections were used to analyze the distribution of lung burden following inhalation exposure. Morphometric measurements of Sirius Red staining for fibrillar collagen were used to assess the connective tissue response. Serial section analysis of enhanced darkfield microscope images was used to examine the redistribution of MWCNT fibers within the lungs during the post-exposure period.Results: At day 1 post-exposure 84 ± 3 and 16 ± 2 percent of the lung burden (Mean ± S.E., N = 5) were in the alveolar and airway regions, respectively. Initial distribution within the alveolar region was 56 ± 5, 7 ± 4 and 20 ± 3 percent of lung burden in alveolar macrophages, alveolar airspaces and alveolar tissue, respectively. Clearance reduced the alveolar macrophage burden of MWCNTs by 35 percent between 1 and 168 days post-exposure, while the content of MWCNTs in the alveolar tissue increased by 63 percent. Large MWCNT structures containing greater than 4 fibers were 53.6 percent of the initial lung burden and accounted for the majority of the decline with clearance, while lung burden of singlet MWCNT was essentially unchanged. The mean linear intercept of alveolar airspace, a measure of the expansion of the lungs, was not significantly different between groups. Pulmonary inflammation and damage, measured as the number of polymorphnuclear leukocytes (PMNs) or lactate dehydrogenase activity (LDH) and albumin in BAL, increased rapidly (1 day post) after inhalation of MWCNTs and declined slowly with time post-exposure. The fibrillar collagen in the alveolar region of MWCNT-exposed mice demonstrated a progressive increase in thickness over time (0.17 ± 0.02, 0.22 ± 0.02, 0.26 ± 0.03, 0.25 ± 0.02 and 0.29 ± 0.01 microns for 1, 14, 84, 168 and 336 days post-exposure) and was significantly different from clean-air controls (0.16 ± 0.02) at 84 and (0.15 ± 0.02) at 336 days post-exposure.Conclusions: Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar region increased by 70% in the 336 days after inhalation exposure. These results demonstrate that inhaled MWCNTs deposit and are retained within the alveolar tissue where they produce a progressive and persistent fibrotic response up to 336 days post-exposure. © 2013 Mercer et al.; licensee BioMed Central Ltd.


Tkach A.V.,Health Effects Laboratory Division | Yanamala N.,Health Effects Laboratory Division | Stanley S.,Health Effects Laboratory Division | Stanley S.,West Virginia University | And 15 more authors.
Small | Year: 2013

Graphene oxide (GO) and C60- or C60-TRIS fullerenes, internalized by murine dendritic cells (DCs), differently affect their abilities to present antigens to T-cells. While C60-fullerenes stimulate the ovalbumin-specific MHC class I-restricted T-cell response, GO impairs the stimulatory potential of DCs. In contrast to C60-fullerenes, GO decreases the intracellular levels of LMP7 immunoproteasome subunits required for processing of protein antigens. This is important for the development of DC-based vaccines. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


PubMed | Engineering and Controls Technology Branch, Health Effects Laboratory Division, Environmental and Radiation Health science Directorate, U.S. Department of Agriculture and University of Pittsburgh
Type: Journal Article | Journal: Particle and fibre toxicology | Year: 2016

Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment.The present study was undertaken to investigate the pulmonary outcomes induced by repeated exposure to respirable CNC. C57BL/6 female and male mice were exposed by pharyngeal aspiration to CNC (40g/mouse) 2 times a week for 3weeks. Several biochemical endpoints and pathophysiological outcomes along with gene expression changes were evaluated and compared in the lungs of male and female mice.Exposure to respirable CNC caused pulmonary inflammation and damage, induced oxidative stress, elevated TGF- and collagen levels in lung, and impaired pulmonary functions. Notably, these effects were markedly more pronounced in females compared to male mice. Moreover, sex differences in responses to pulmonary exposure to CNC were also detected at the level of global mRNA expression as well as in inflammatory cytokine/chemokine activity.Overall, our results indicate that there are considerable differences in responses to respirable CNC based on gender with a higher pulmonary toxicity observed in female mice.


PubMed | Health Effects Laboratory Division, Marshall University and Michigan Technological University
Type: | Journal: Data in brief | Year: 2015

High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press). with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS) can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., Biomaterials, 2015, in press; Vellaisamy et al., Data in Brief, 2015, in press.). The data contained in this article evaluates the contribution of MAPK signaling in LPS induced sepsis. Macrophage cells (RAW 264.7) were treated with a range of cerium oxide nanoparticle concentration in the presence and absence of LPS. Immunoblotting was performed on the cell lysates to evaluate the effect of cerium oxide nanoparticle treatment on LPS induced changes in Mitogen Activated Protein Kinases (MAPK) p-38, ERK 1/2, and SAPK/JNK phosphorylation.


PubMed | Health Effects Laboratory Division, Marshall University and Michigan Technological University
Type: | Journal: Data in brief | Year: 2015

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1g/ml did not significantly influence cell survival as determined by the MTT assay.


PubMed | Health Effects Laboratory Division, West Virginia State University and Marshall University
Type: Journal Article | Journal: Journal of preventive medicine and public health = Yebang Uihakhoe chi | Year: 2015

With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs.Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis.No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05).Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.

Loading Health Effects Laboratory Division collaborators
Loading Health Effects Laboratory Division collaborators