Savannah, GA, United States
Savannah, GA, United States

Time filter

Source Type

Patent
Health Discovery | Date: 2011-08-17

The methods, systems and devices of the present invention comprise use of support vector machines for the identification of patterns that are important for medical diagnosis, prognosis and treatment. Such patterns may be found in many different datasets. The present invention also comprises methods and compositions for the treatment and diagnosis of medical conditions.


Patent
Health Discovery | Date: 2011-08-29

Biomarkers are identified by analyzing gene expression data using support vector machines (SVM), recursive feature elimination (RFE) and/or linear ridge regression classifiers to rank genes according to their ability to separate prostate cancer from normal tissue. Proteins expressed by identified genes are detected in patient samples to screen, predict and monitor prostate cancer.


Patent
Health Discovery | Date: 2011-03-16

A system and method for enhancing knowledge discovery from data using a learning machine in general and a support vector machine in particular. Training data for a learning machine is pre-processed in order to add meaning thereto. Pre-processing data may involve transforming the data points and/or expanding the data points. By adding meaning to the data, the learning machine is provided with a greater amount of information for processing. With regard to support vector machines in particular, the greater the amount of information that is processed, the better generalizations about the data that may be derived. The learning machine is therefore trained with the pre-processed training data and is tested with test data that is pre-processed in the same manner. The test output from the learning machine is post-processed in order to determine if the knowledge discovered from the test data is desirable. Post-processing involves interpreting the test output into a format that may be compared with the test data. Live data is pre-processed and input into the trained and tested learning machine. The live output from the learning machine may then be post-processed into a computationally derived alphanumerical classifier for interpretation by a human or computer automated process.


A method is provided for unsupervised clustering of data to identify pattern similarities. A clustering algorithm randomly divides the data into k different subsets and measures the similarity between pairs of datapoints within the subsets, assigning a score to the pairs based on similarity, with the greatest similarity giving the highest correlation score. A distribution of the scores is plotted for each k. The highest value of k that has a distribution that remains concentrated near the highest correlation score corresponds to the number of classes having pattern similarities.


Patent
Health Discovery | Date: 2015-06-29

Biomarkers are identified by analyzing gene expression data using support vector machines (SVM) to rank genes according to their ability to separate prostate cancer from normal tissue. Expression products of identified genes are detected in patient samples, including prostate tissue, serum, semen and urine, to screen, predict and monitor prostate cancer.


A method is provided for unsupervised clustering of gene expression data to identify co-regulation patterns. A clustering algorithm randomly divides the data into k different subsets and measures the similarity between pairs of datapoints within the subsets, assigning a score to the pairs based on similarity, with the greatest similarity giving the highest correlation score. A distribution of the scores is plotted for each k. The highest value of k that has a distribution that remains concentrated near the highest correlation score corresponds to the number of co-regulation patterns.


Patent
Health Discovery | Date: 2013-06-19

A system and method for computer-assisted karyotyping includes a processor which receives a digitized image of metaphase chromosomes for processing in an image processing module and a classifier module. The image processing module may include a segmenting function for extracting individual chromosome images, a bend correcting function for straightening images of chromosomes that are bent or curved and a feature selection function for distinguishing between chromosome bands. The classifier module, which may be one or more trained kernel-based learning machines, receives the processed image and generates a classification of the image as normal or abnormal.


Gene expression data are analyzed using learning machines such as support vector machines (SVM) and ridge regression classifiers to rank genes according to their ability to distinguish between BPH (benign prostatic hyperplasia) and all other conditions. Results are provided showing the correlation of results obtained using data from two independent studies that took place at different times using different microarrays. Genes are ranked according to area-under-the-curve, false discovery rate and fold change.


Patent
Health Discovery | Date: 2013-06-10

Support vector machines are used to classify data contained within a structured dataset such as a plurality of signals generated by a spectral analyzer. The signals are pre-processed to ensure alignment of peaks across the spectra. Similarity measures are constructed to provide a basis for comparison of pairs of samples of the signal. A support vector machine is trained to discriminate between different classes of the samples. to identify the most predictive features within the spectra. In a preferred embodiment feature selection is performed to reduce the number of features that must be considered.


A method for enhancing knowledge discovery from a dataset uses visualization of a subset features within a dataset that provide the best separation of the dataset into classes. One or more classifiers are trained using each subset of features and the success rate of the classifiers in accurately classifying the dataset is calculated. The success rate is converted into a ranking that is represented as a visually distinguishable characteristic. One or more tree structures may be displayed with a node representing each feature, and the visually distinguishable characteristic is used to indicate the scores for each feature subset. Connectors between the nodes may be used to indicate unconstrained and constrained feature sets. Nodes within a constrained path may be substituted for a feature within the preferred, unconstrained path if that feature is impractical to measure.

Loading Health Discovery collaborators
Loading Health Discovery collaborators