Entity

Time filter

Source Type

Needham, MA, United States

Myatt T.A.,Environmental Health and Engineering | Allen J.G.,Environmental Health and Engineering | Minegishi T.,Environmental Health and Engineering | McCarthy W.B.,Massachusetts Institute of Technology | And 4 more authors.
Journal of Exposure Science and Environmental Epidemiology | Year: 2010

Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, γ ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, γ activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E4 mSv/h, respectively. The maximum activity concentrations of the 40K, 232Th, and 226Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health. © 2010 Nature Publishing Group All rights reserved. Source


Allen J.G.,Environmental Health and Engineering | Minegishi T.,Environmental Health and Engineering | Myatt T.A.,Environmental Health and Engineering | Stewart J.H.,Environmental Health and Engineering | And 3 more authors.
Journal of Exposure Science and Environmental Epidemiology | Year: 2010

Radon gas (222Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium (226Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m2/h (median 3.9 Bq/m2/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m3; 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m3; 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples. © 2010 Nature Publishing Group All rights reserved. Source


Kingsley S.L.,Brown University | Eliot M.N.,Brown University | Carlson L.,Brown University | Finn J.,Environmental Health and Engineering | And 3 more authors.
Journal of Exposure Science and Environmental Epidemiology | Year: 2014

Long-term exposure to traffic pollution has been associated with adverse health outcomes in children and adolescents. A significant number of schools may be located near major roadways, potentially exposing millions of children to high levels of traffic pollution, but this hypothesis has not been evaluated nationally. We obtained data on the location and characteristics of 114,644 US public and private schools, grades prekindergarten through 12, and calculated their distance to the nearest major roadway. In 2005-2006, 3.2 million students (6.2%) attended 8,424 schools (7.3%) located within 100 m of a major roadway, and an additional 3.2 million (6.3%) students attended 8,555 (7.5%) schools located 100-250 m from a major roadway. Schools serving predominantly Black students were 18% (95% CI, 13-23%) more likely to be located within 250 m of a major roadway. Public schools eligible for Title I programs and those with a majority of students eligible for free/reduced price meals were also more likely to be near major roadways. In conclusion, 6.4 million US children attended schools within 250 m of a major roadway and were likely exposed to high levels of traffic pollution. Minority and underprivileged children were disproportionately affected, although some results varied regionally.© 2014 Nature America, Inc. Source

Discover hidden collaborations