Headway Technologies Inc.

Milpitas, CA, United States

Headway Technologies Inc.

Milpitas, CA, United States
SEARCH FILTERS
Time filter
Source Type

A magnetic head includes a coil, a main pole, a write shield, and a return path section. The coil includes a coil element located on the trailing side of the main pole. The coil element has a front end face facing toward the medium facing surface. The return path section includes a first portion, a second portion, and an intermediate film interposed between the first portion and the second portion. Part of the first portion is interposed between the medium facing surface and the front end face of the coil element. Part of the second portion is interposed between the first portion and the front end face of the coil element.


Patent
Headway Technologies Inc. | Date: 2016-02-01

A near field transducer (NFT) is formed between a waveguide and main pole layer at an air bearing surface (ABS). The NFT includes a resonator body layer made of Au, for example, with a front side at a first plane that is recessed a first distance from the ABS and a back side that is at a second plane formed parallel to the ABS and first plane. The NFT also has a peg layer with a rectangular peg portion between the ABS and first plane, and a larger back portion between the first and second planes that overlays directly above the resonator body layer. The peg layer is preferably made of Rh to improve mechanical stability of the NFT without significantly degrading overall optical efficiency of the NFT. A blocker may be formed between the ABS and waveguide to prevent light not coupled to the NFT from reaching the ABS.


A method of forming a MTJ with a tunnel barrier having a high tunneling magnetoresistance ratio, and low resistance x area value is disclosed. The method preserves perpendicular magnetic anisotropy in bottom and top magnetic layers that adjoin bottom and top surfaces of the tunnel barrier. A key feature is a passive oxidation step of a first Mg layer that is deposited on the bottom magnetic layer wherein a maximum oxygen pressure is 10-5torr. A bottom portion (21) of the first Mg layer remains unoxidized thereby protecting the bottom magnetic layer from substantial oxidation during subsequent oxidation and anneal processes that are employed to complete the fabrication of the tunnel barrier and MTJ. An uppermost Mg layer may be formed as the top layer in the tunnel barrier stack before a top magnetic layer is deposited.


Patent
Headway Technologies Inc. | Date: 2016-11-30

A read head is longitudinally biased unidirectionally by laterally abutting soft magnetic layers or multilayers. The soft magnetic layers are themselves magnetically stabilized by layers of antiferromagnetic material that are exchange coupled to them. The same layers of antiferromagnetic materials can be used to stabilize a unidirectional anisotropy of an overhead shield by means of exchange coupling. By including the antiferromagnetic material layer within the patterned biasing structure itself, an additional layer of antiferromagnetic material that normally covers the entire sensor structure is eliminated. The elimination of an entire layer is also advantageous for reducing the inter-sensor spacing in a TDMR (two dimensional magnetic recording) configuration where two sensor are vertically stacked on top of each other.


A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA), which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization, and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After forming a sensor sidewall that stops in the seed layer or on the bottom shield, a conformal insulation layer is deposited. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths <50 nm when PMA is greater than the FL self-demag field. Effective bias field is rather insensitive to sensor aspect ratio, which makes tall stripe and narrow width sensors viable for high RA TMR configurations.


Patent
Headway Technologies Inc. | Date: 2015-09-09

A read head is longitudinally biased unidirectionally by laterally abutting soft magnetic layers or multilayers. The soft magnetic layers are themselves magnetically stabilized by layers of antiferromagnetic material that are exchange coupled to them. The same layers of antiferromagnetic materials can be used to stabilize a unidirectional anisotropy of an overhead shield by means of exchange coupling. By including the antiferromagnetic material layer within the patterned biasing structure itself, an additional layer of antiferromagnetic material that normally covers the entire sensor structure is eliminated. The elimination of an entire layer is also advantageous for reducing the inter-sensor spacing in a TDMR (two dimensional magnetic recording) configuration where two sensor are vertically stacked on top of each other.


A perpendicular magnetic recording writer is disclosed with a side shield separated from a write pole side by a gap layer at an air bearing surface (ABS) where the side shield has a first sidewall facing the write pole with an end at height (h1) from the ABS, and a second sidewall at height h1 that is parallel to the ABS. The write pole side is curved such that a first portion proximate to the ABS is at an angle of 0 to 40 degrees with respect to a center plane formed orthogonal to the ABS, and a second section proximate to a corner where the curved side connects with a flared main pole side is formed substantially parallel to the second sidewall. When h1 is 30-80 nm, and the corner is 80-150 nm from the ABS, overwrite is improved while cross-track field gradient is enhanced.


Patent
Headway Technologies Inc. | Date: 2016-11-28

A method is disclosed for forming a perpendicular magnetic recording writer with an all wrap around (AWA) shield design wherein one or more of the leading shield, trailing shield, and side shields are a composite wherein a magnetic hot seed layer made of a >19 kG to 24 kG material adjoins a gap layer, and a side of the hot seed layer opposite the gap layer adjoins a high damping magnetic layer made of a 10-16 kG material (or a 16-19 kG material in the trailing shield) having a Gilbert damping parameter >0.04. In one embodiment, the high damping magnetic layer is FeNiRe with a Re content of 3 to 15 atomic %. The main pole leading and trailing sides may be tapered. Side shields may have a single taper or dual taper structure. Higher writer speed with greater areal density capability is achieved.


Patent
Headway Technologies Inc. | Date: 2016-11-28

A perpendicular magnetic recording writer with an all wrap around (AWA) shield design wherein one or more of the leading shield, trailing shield, and side shields comprises a magnetic hot seed layer made of a >19 kG to 24 kG material that adjoins a gap layer, and a side of the hot seed layer opposite the gap layer adjoins a high damping magnetic layer made of a 10-16 kG material (or a 16-19 kG material in the trailing shield) having a Gilbert damping parameter >0.04. In one embodiment, the high damping magnetic layer is FeNiRe with a Re content of 3 to 15 atomic %. The main pole leading and trailing sides may be tapered. Side shields may have a single taper or dual taper structure. Higher writer speed with greater areal density capability is achieved.


Patent
Headway Technologies Inc. | Date: 2016-11-07

A magnetic element is disclosed wherein a composite seed layer such as TaN/Mg enhances perpendicular magnetic anisotropy (PMA) in an overlying magnetic layer that may be a reference layer, free layer, or dipole layer. The first seed layer is selected from one or more of Ta, Zr, Nb, TaN, ZrN, NbN, and Ru. The second seed layer is selected from one or more of Mg, Sr, Ti, Al, V, Hf, B, and Si. A growth promoting layer made of NiCr or an alloy thereof is inserted between the seed layer and magnetic layer. In some embodiments, a first composite seed layer/NiCr stack is formed below the reference layer, and a second composite seed layer/NiCr stack is formed between the free layer and a dipole layer. The magnetic element has thermal stability to at least 400 C.

Loading Headway Technologies Inc. collaborators
Loading Headway Technologies Inc. collaborators