Entity

Time filter

Source Type

Bremen, Germany

Fortunato A.,HE Space Operations | Lamborelle O.,Space Applications Services
Proceedings of the International Astronautical Congress, IAC | Year: 2012

Real-time voice communication between the astronauts in space and the flight control teams on the ground has been a vital element of human spaceflight from the early pioneering days of Vostok and Mercury till today's long duration missions on the International Space Station. Across the borders and throughout time, the task of talking to the crew has been primarily assigned to one position in the control centres: the spacecraft communicator. The present article outlines the evolution of such position in the main human spaceflight programs. The technical implementation of the voice link is briefly described, while the main focus is on the people assigned to the job, their role and responsibilities and how they are selected, trained and perform their duties in their respective organizations. The US and Russian approaches are compared and the role of Europe outlined in its evolution over the years. Copyright © (2012) by the International Astronautical Federation. Source


Orton G.S.,Jet Propulsion Laboratory | Fletcher L.N.,University of Oxford | Moses J.I.,Space Science Institute | Mainzer A.K.,Jet Propulsion Laboratory | And 6 more authors.
Icarus | Year: 2014

On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ~1μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2 collision-induced absorption is too warm to reproduce observations between wavelengths of 0.8 and 3.3mm. Adding an additional absorber such as H2S provides a reasonable match to the spectrum, although a unique identification of the responsible absorber is not yet possible with available data. An immediate practical use for the spectrum resulting from this model is to establish a high-precision continuum flux model for use as an absolute radiometric standard for future astronomical observations. © 2014 Elsevier Inc. Source


Choi J.-Y.,Chungbuk National University | Han C.,Chungbuk National University | Udalski A.,University of Warsaw | Sumi T.,Osaka University | And 135 more authors.
Astrophysical Journal | Year: 2013

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M· and 0.034 M·, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of 0.02 M·. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries. © 2013. The American Astronomical Society. All rights reserved. Source


Sloan G.C.,Cornell University | Herter T.L.,Cornell University | Charmandaris V.,University of Crete | Charmandaris V.,National institute for astrophysics | And 3 more authors.
Astronomical Journal | Year: 2015

We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 μm increases for both later optical spectral classes and redder (B-V)0 colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths in the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 μm. © 2015. The American Astronomical Society. All rights reserved. Source


Orton G.S.,Jet Propulsion Laboratory | Moses J.I.,Space Science Institute | Fletcher L.N.,University of Oxford | Mainzer A.K.,Jet Propulsion Laboratory | And 6 more authors.
Icarus | Year: 2014

Mid-infrared spectral observations Uranus acquired with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at the time of the 2007 equinox. For vertically uniform eddy diffusion coefficients in the range 2200-2600cm2s-1, photochemical models that reproduce the observed methane emission also predict C2H6 profiles that compare well with emission in the 11.6-12.5μm wavelength region, where the υ9 band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion coefficient Kzz=2430cm2s-1 and a CH4 tropopause mole fraction of 1.6×10-5 provides a good fit to other hydrocarbon emission features, such as those of C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of 0.43, suggesting that improvements are needed in the chemical reaction mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4 ratio of 3.0±0.2×10-4. From the best-fit scaling of these photochemical-model profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8×1019molecule-cm-2 for CH4, 6.2±1.0×1016molecule-cm-2 for C2H2 (with a value 24% higher from a different longitudinal sampling), 3.1±0.3×1016molecule-cm-2 for C2H6, 8.6±2.6×1013molecule-cm-2 for CH3C2H, 1.8±0.3×1013molecule-cm-2 for C4H2, and 1.7±0.4×1013molecule-cm-2 for CO2 on Uranus. A model with Kzz increasing with altitude fits the observed spectrum and requires CH4 and C2H6 column abundances that are 54% and 45% higher than their respective values in the nominal model, but the other hydrocarbons and CO2 are within 14% of their values in the nominal model. Systematic uncertainties arising from errors in the temperature profile are estimated very conservatively by assuming an unrealistic "alternative" temperature profile that is nonetheless consistent with the observations; for this profile the column abundance of CH4 is over four times higher than in the nominal model, but the column abundances of the hydrocarbons and CO2 differ from their value in the nominal model by less than 22%. The CH3D/CH4 ratio is the same in both the nominal model with its uniform Kzz as in the vertically variable Kzz model, and it is 10% lower with the "alternative" temperature profile than the nominal model. There is no compelling evidence for temporal variations in global-average hydrocarbon abundances over the decade between Infrared Space Observatory and Spitzer observations, but we cannot preclude a possible large increase in the C2H2 abundance since the Voyager era. Our results have implications with respect to the influx rate of exogenic oxygen species and the production rate of stratospheric hazes on Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures. © 2014 Elsevier Inc. Source

Discover hidden collaborations