Entity

Time filter

Source Type

Shanghai, China

Zhou J.,Anhui Medical University | Zhou J.,Clinical Laboratory | Gan X.,Anhui Medical University | Wang Y.,Zhejiang Sci-Tech University | And 10 more authors.
Parasites and Vectors | Year: 2015

Background: Toxoplasma gondii, an obligate intracellular pathogen, has a strong affinity for the nervous system. TgCtwh3, a representative Chinese 1 Toxoplasma strain prevalent in China, has the polymorphic features of the effectors ROP16I/III with type I and GRA15II with type II Toxoplasma strains. The interaction of this atypical strain with host cells remains extremely elusive. Methods: Using a transwell system, neural stem cells C17.2 were co-cultured with the tachyzoites of TgCtwh3 or standard type I RH strain. The apoptosis levels of C17.2 cells and the expression levels of related proteins in the endoplasmic reticulum stress (ERS)-mediated pathway were detected by flow cytometry and Western blotting. Results: The apoptosis level of C17.2 cells co-cultured with TgCtwh3 had a significant increase compared to the negative control group; however, the apoptosis level in the TgCtwh3 group was significantly lower than that in the RH co-culture group. Western blotting analyses reveal that, after the C17.2 cells were co-cultured with TgCtwh3 and RH tachyzoites, the expression levels of caspase-12, CHOP and p-JNK in the cells increased significantly when compared to the control groups. After the pretreatment of Z-ATAD-FMK, an inhibitor of caspase-12, the apoptosis level of the C17.2 cells co-cultured with TgCtwh3 or RH tachyzoites had an apparent decline, and correspondingly, the expression levels of those related proteins were notably decreased. Conclusions: Our findings suggest that TgCtwh3 may induce the apoptosis of the C17.2 cells by up-regulation of caspase-12, CHOP, and p-JNK, which are associated with ERS signaling pathways. This work contributes to better understanding the possible mechanism of brain pathology induced by T. gondii Chinese 1 isolates prevalent in China, and also reveals the potential value of ERS inhibitors to treat such related diseases in the future. © 2015 Zhou et al.; licensee BioMed Central. Source


Pietra C.,Helsinn Healthcare SA | Takeda Y.,Ono Pharmaceutical Co. | Tazawa-Ogata N.,Ono Pharmaceutical Co. | Minami M.,Ono Pharmaceutical Co. | And 3 more authors.
Journal of Cachexia, Sarcopenia and Muscle | Year: 2014

Background: Anamorelin HCl (ANAM) is a novel, orally active, ghrelin receptor agonist in clinical development for the treatment of cancer cachexia. We report in vitro and in vivo studies evaluating the preclinical pharmacologic profile of ANAM.Results: ANAM showed significant agonist and binding activity on the ghrelin receptor, and stimulated GH release in vitro. In rats, ANAM significantly and dose-dependently increased FI and BW at all dose levels compared with control, and significantly increased GH levels at 10 or 30 mg/kg doses. Increases in GH and IGF-1 levels were observed following ANAM administration in pigs.Conclusion: ANAM is a potent and highly specific ghrelin receptor agonist with significant appetite-enhancing activity, leading to increases in FI and BW, and a stimulatory effect on GH secretion. These results support the continued investigation of ANAM as a potential treatment of cancer anorexia-cachexia syndrome.Methods: Fluorescent imaging plate reader and binding assays in HEK293 and baby hamster kidney cells determined the agonist and antagonist activity of ANAM, and its affinity for the ghrelin receptor. Rat pituitary cells were incubated with ANAM to evaluate its effect on growth hormone (GH) release. In vivo, rats were treated with ANAM 3, 10, or 30 mg/kg, or control orally, once daily for 6 days to evaluate the effect on food intake (FI) and body weight (BW), and once to assess GH response. In pigs, single (3.5 mg/kg) or continuous (1 mg/kg/day) ANAM doses were administered to assess GH and insulin-like growth factor (IGF-1) response. © 2014, Springer-Verlag Berlin Heidelberg. Source


Jin Y.,Tsinghua University | Luan X.,Tsinghua University | Liu H.,Tsinghua University | Liu H.,Key Laboratory of Tumor Metabonomics at Shenzhen City | And 7 more authors.
Talanta | Year: 2012

A novel VEGFR-2 and Src dual inhibitor, 6-Chloro-2-methoxy-N-(2- methoxybenzyl) acridin-9-amine (MBAA), is a 9-aminoacridine derivative, but its pharmacokinetics and metabolism in body remain unknown. Using liquid chromatography tandem electrospray ionization mass spectrometry with the multiple reaction monitoring modes, we developed and validated a simple, rapid, sensitive and accurate technology for analyses of MBAA in the rat plasma, urine and bile. The micro samples were quickly prepared by 96-well plate. Chromatographic separation was performed on a C 18 column with gradient elution. High-quality linearity calibration curves were achieved over a concentration range of 1.00-3000 ng mL -1. Intra- and inter-day precisions (RSD) were less than 8.5%, and accuracy (RE%) ranged from -2.9% to 12%. Extraction recoveries of MBAA were consistent with an average of 82.2-111.4% at three QC concentrations. When administered intravenously at a single dose of 2.0 mg kg -1 to male SD rats, MBAA was rapidly eliminated with a T 1/2 of 0.9 ± 0.1 h and AUC 0-t of 369 ± 44.7 ng mL -1. We identified four direct phase I and phase II metabolites by mass difference of molecular ions between metabolites and the parent compound. Various fragmentation patterns of MBAA were used to identify and characterize its metabolites. This LC-MS/MS analysis provides a useful approach to the pharmacokinetic and metabolic study of MBAA. © 2011 Elsevier B.V. All rights reserved. Source


Kazmierski W.M.,Glaxosmithkline | Maynard A.,Glaxosmithkline | Duan M.,HD Biosciences | Baskaran S.,Glaxosmithkline | And 9 more authors.
Journal of Medicinal Chemistry | Year: 2014

Rapid clinical progress of hepatitis C virus (HCV) replication inhibitors, including these selecting for resistance in the NS5A region (NS5A inhibitors), promises to revolutionize HCV treatment. Herein, we describe our explorations of diverse spiropyrrolidine motifs in novel NS5A inhibitors and a proposed interaction model. We discovered that the 1,4-dioxa-7-azaspiro[4.4]nonane motif in inhibitor 41H (GSK2236805) supported high potency against genotypes 1a and 1b as well as in genotype 1b L31V and Y93H mutants. Consistent with this, 41H potently suppressed HCV RNA in the 20-day RNA reduction assay. Pharmacokinetic and safety data supported further progression of 41H to the clinic. © 2014 American Chemical Society. Source


Wang S.,Beijing University of Chinese Medicine | Zhang Q.,Beijing University of Chinese Medicine | Zhang Y.,Beijing University of Chinese Medicine | Shen C.,Beijing University of Chinese Medicine | And 4 more authors.
Biochemical and Biophysical Research Communications | Year: 2016

Studies of human genetics have implicated the role of SIRT1 in regulating obesity, insulin resistance, and longevity. These researches motivated the identification of novel SIRT1 activators. The current study aimed to investigate the potential efficacy of agrimol B, a polyphenol derived from Agrimonia pilosa Ledeb., on mediating SIRT1 activity and fat metabolism. Results showed that agrimol B significantly induced cytoplasm-to-nucleus shuttle of SIRT1. Furthermore, we confirmed that agrimol B dramatically inhibited 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. Consequently, adipogenesis was blocked by treatment of agrimol B at the early stage of differentiation in a dose-dependent manner, the IC50 value was determined as 3.35 ± 0.32 μM. Taken together, our data suggest a therapeutic potential of agrimol B on alleviating obesity, through modulation of SIRT1-PPARγ signal pathway. © 2016 Source

Discover hidden collaborations