Time filter

Source Type

Laramie, WY, United States

Hess J.E.,University of Wyoming | Hess J.E.,Hayden Wing Associates LLC | Beck J.L.,University of Wyoming
Wildlife Society Bulletin | Year: 2012

Wyoming big sagebrush (Artemisia tridentata wyomingensis) treatments are often implemented to improve breeding habitat for greater sage-grouse (Centrocercus urophasianus), a species of considerable conservation concern. In 2008 and 2009, we measured vegetation structure available to sage-grouse for breeding at 19 sites that were prescribed burned during 1990-1999 and 2000-2006, 6 sites that were mowed during 2000-2006, and 25 paired, untreated reference sites in the Bighorn Basin of north-central Wyoming, USA We compared minimum guidelines for canopy cover and height of Wyoming big sagebrush and perennial grass in arid greater sage-grouse breeding habitat (Connelly et al. 2000b) to measurements at our sampling sites. Sagebrush canopy cover and height at reference sites met the minimum guidelines. Sagebrush canopy cover at burned and mowed sites did not meet the minimum guideline, except for sites mowed on aridic soilsmeasured during 2009. Burned and mowed (3 of 4 cases) sagebrush did not meet minimum height for breeding up to 19 yr and 9 yr post-treatment, respectively. Perennial grass canopy cover and height met the minimum guidelines for breeding habitat at reference, burned, and mowed sites. Burning increased grass canopy cover, but not height, compared to reference sites in 2 of 8 instances. Because burning, but not mowing, infrequently enhanced grass cover, but not height, and sagebrush structure was reduced by both practices for long periods, managers should consider how treatments may negatively affect Wyoming big sagebrush communities for sage-grouse and consider other practices, including continued nontreatment and improved livestock grazing, to increase grass cover and height. © © 2012 The Wildlife Society. Source

Hess J.E.,University of Wyoming | Hess J.E.,Hayden Wing Associates LLC | Beck J.L.,University of Wyoming
Journal of Wildlife Management | Year: 2012

Detecting the disappearance of active leks is the most efficient way to determine large declines in greater sage-grouse (Centrocercus urophasianus) populations; thus, understanding factors that influence lek abandonment is critical. We evaluated factors that may have influenced the probability of sage-grouse lek abandonment in the Bighorn Basin (BHB) of north-central Wyoming from 1980 to 2009. Our objective was to examine lek abandonment based on landscape characteristics that explain differences between occupied and unoccupied leks. We evaluated lek abandonment from 144 occupied and 39 unoccupied leks from the Wyoming Game and Fish Department lek database with sufficient data for our 30-year analysis. We conducted our analysis with binary logistic regression using landscape predictor variables obtained from geographic coverages at 5 scales (1.0-, 3.2-, 4.0-, 5.0-, and 6.4-km radii around leks) to evaluate how these disturbances have influenced lek abandonment. Coverages included anthropogenic characteristics such as agricultural development, oil and gas development, prescribed burned treatments, and roads; and environmental characteristics such as vegetation attributes and wildfire. Our combined model included the number of oil and gas wells in a 1.0-km radius, percent area of wildfire in a 1.0-km radius, and variability in shrub height in a 1.0-km radius around sage-grouse leks. Abandoned (unoccupied) leks had 1.1-times the variability of shrub height in a 1.0-km radius, 3.1-times the percentage of wildfire in a 1.0-km radius, and 10.3-times the number of oil and gas wells in a 1.0-km radius compared to occupied leks. The model-averaged odds of lek persistence with every 1 unit increase in oil and gas wells within a 1.0-km radius was 0.66 (90% CI: 0.37-0.94), odds with every 1% increase in wildfire in a 1.0-km radius was 0.99 (90% CI: 0.85-1.12), and odds with every 1 unit increase in the standard deviation of shrub height within a 1.0-km radius around a lek was 0.77 (90% CI: 0.45-1.08). Because the 90% confidence intervals around the odds ratios of wells did not overlap 1.0, we suggest this predictor variable was most influential in our model-averaged estimates. The BHB has lower developed reserves of oil and gas than many other regions; however, our study supports findings from other studies that demonstrate energy development increases lek abandonment. Our findings indicate conservation efforts should be focused on minimizing well development and implementing wildfire suppression tactics near active sage-grouse leks. © 2012 The Wildlife Society. Copyright © The Wildlife Society, 2012. Source

Webb S.L.,Hayden Wing Associates LLC | Dzialak M.R.,Tetra Tech Inc. | Kosciuch K.L.,Hayden Wing Associates LLC | Winstead J.B.,Hayden Wing Associates LLC
Rangeland Ecology and Management | Year: 2013

Areas identified as winter range are important seasonal habitats for mule deer (Odocoileus hemionus) because they can moderate overwinter mortality by providing thermal cover and forage. Therefore, identifying seasonally important resources is a conservation priority, especially when sensitive areas are proposed for development. We used data collected from global positioning system (GPS) collars fitted on female mule deer (n=19; one location every 3 h) to identify resources important during winter (23 February 2011-30 April 2011; 1 November 2011-15 January 2012) in a region spanning southern Wyoming and northern Colorado that has been proposed for wind energy development. The study period included portions of two consecutive winters but were pooled for analysis. We used methods to account for GPS biases, fractal analyses to determine perceived spatial scale, and discrete choice models and conditional logistic regression to assess resource selection prior to development (i.e., baseline data). Resource selection by female mule deer revealed similar patterns between active (0600-1800 hours) and nonactive (2100-0300 hours) periods. Deer selected most strongly for proximity to rock outcrops and shrubland and average values of slope. Deer tended to avoid roads and grasslands; all other landscape features had minimal influence on resource selection (hazard ratios near, or overlapping, 1). Using the fixed-effects coefficient estimates, we developed two spatially explicit maps that depicted probability of mule deer occurrence across the landscape. Based on an independent validation sample, each map (active and nonactive) validated well with a greater percentage of locations occurring in the two highest probability of use bins. These maps offer guidance to managing mule deer populations, conserving important seasonal habitats, and mitigating development (e.g., wind energy) in areas identified as important to mule deer. © 2013 The Society for Range Management. Source

Harju S.M.,Hayden Wing Associates LLC | Dzialak M.R.,Hayden Wing Associates LLC | Taylor R.C.,Taylor Environmental Consulting LLC | Hayden-Wing L.D.,Hayden Wing Associates LLC | Winstead J.B.,Hayden Wing Associates LLC
Journal of Wildlife Management | Year: 2010

Rapid expansion of energy development in some portions of the Intermountain West, USA, has prompted concern regarding impacts to declining greater sage-grouse (Centrocercus urophasianus) populations. We used retrospective analyses of public data to explicitly investigate potential thresholds in the relationship between lek attendance by male greater sage-grouse, the presence of oil or gas wells near leks (surface occupancy), and landscape-level density of well pads. We used generalized linear models and generalized estimating equations to analyze data on peak male attendance at 704 leks over 12 years in Wyoming, USA. Within this framework we also tested for time-lag effects between development activity and changes in lek attendance. Surface occupancy of oil or gas wells adjacent to leks was negatively associated with male lek attendance in 5 of 7 study areas. For example, leks that had ≥1 oil or gas well within a 0.4-km (0.25-mile) radius encircling the lek had 3591 fewer attending males than leks with no well within this radius. In 2 of these 5 study areas, negative effects of well surface occupancy were present out to 4.8 km, the largest radius we investigated. Declining lek attendance was also associated with a higher landscape-level density of well pads; lek attendance at well-pad densities of 1.54 well pads/km 2 (4 well pads/mile 2) ranged from 13 to 74 lower than attendance at unimpacted leks (leks with zero well pads within 8.5 km). Lek attendance at a well-pad density of 3.09 well pads/km 2 (8 well pads/mile 2) ranged from 77 to 79 lower than attendance at leks with no well pad within 8.5 km. Further, our analysis of time-lag effects suggested that there is a delay of 210 years between activity associated with energy development and its measurable effects on lek attendance. These results offer new information for consideration by land managers on spatial and temporal associations between human activity and lek attendance in sage-grouse, and suggest that regional variation is an important consideration in refining existing management strategies. © The Wildlife Society. Source

Harju S.M.,Hayden Wing Associates LLC | Olson C.V.,Hayden Wing Associates LLC | Dzialak M.R.,Hayden Wing Associates LLC | Mudd J.P.,Hayden Wing Associates LLC | Winstead J.B.,Hayden Wing Associates LLC
PLoS ONE | Year: 2013

Connectivity of animal populations is an increasingly prominent concern in fragmented landscapes, yet existing methodological and conceptual approaches implicitly assume the presence of, or need for, discrete corridors. We tested this assumption by developing a flexible conceptual approach that does not assume, but allows for, the presence of discrete movement corridors. We quantified functional connectivity habitat for greater sage-grouse (Centrocercus urophasianus) across a large landscape in central western North America. We assigned sample locations to a movement state (encamped, traveling and relocating), and used Global Positioning System (GPS) location data and conditional logistic regression to estimate state-specific resource selection functions. Patterns of resource selection during different movement states reflected selection for sagebrush and general avoidance of rough topography and anthropogenic features. Distinct connectivity corridors were not common in the 5,625 km2 study area. Rather, broad areas functioned as generally high or low quality connectivity habitat. A comprehensive map predicting the quality of connectivity habitat across the study area validated well based on a set of GPS locations from independent greater sage-grouse. The functional relationship between greater sage-grouse and the landscape did not always conform to the idea of a discrete corridor. A more flexible consideration of landscape connectivity may improve the efficacy of management actions by aligning those actions with the spatial patterns by which animals interact with the landscape. © 2013 Harju et al. Source

Discover hidden collaborations