Haskins Laboratories

New Haven, CT, United States

Haskins Laboratories

New Haven, CT, United States
Time filter
Source Type

Van Dyke J.A.,Haskins Laboratories | Johns C.L.,Haskins Laboratories | Kukona A.,University of Dundee
Cognition | Year: 2014

Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. © 2014 Elsevier B.V.

Van Dyke J.A.,Haskins Laboratories | McElree B.,New York University
Journal of Memory and Language | Year: 2011

The role of interference as a primary determinant of forgetting in memory has long been accepted, however its role as a contributor to poor comprehension is just beginning to be understood. The current paper reports two studies, in which speed-accuracy tradeoff and eye-tracking methodologies were used with the same materials to provide converging evidence for the role of syntactic and semantic cues as mediators of both proactive (PI) and retroactive interference (RI) during comprehension. Consistent with previous work (e.g., Van Dyke & Lewis, 2003), we found that syntactic constraints at the retrieval site are among the cues that drive retrieval in comprehension, and that these constraints effectively limit interference from potential distractors with semantic/pragmatic properties in common with the target constituent. The data are discussed in terms of a cue-overload account, in which interference both arises from and is mediated through a direct-access retrieval mechanism that utilizes a linear, weighted cue-combinatoric scheme. © 2011 Elsevier Inc.

Frost R.,Hebrew University of Jerusalem | Frost R.,Haskins Laboratories
Behavioral and Brain Sciences | Year: 2012

In the last decade, reading research has seen a paradigmatic shift. A new wave of computational models of orthographic processing that offer various forms of noisy position or context-sensitive coding have revolutionized the field of visual word recognition. The influx of such models stems mainly from consistent findings, coming mostly from European languages, regarding an apparent insensitivity of skilled readers to letter order. Underlying the current revolution is the theoretical assumption that the insensitivity of readers to letter order reflects the special way in which the human brain encodes the position of letters in printed words. The present article discusses the theoretical shortcomings and misconceptions of this approach to visual word recognition. A systematic review of data obtained from a variety of languages demonstrates that letter-order insensitivity is neither a general property of the cognitive system nor a property of the brain in encoding letters. Rather, it is a variant and idiosyncratic characteristic of some languages, mostly European, reflecting a strategy of optimizing encoding resources, given the specific structure of words. Since the main goal of reading research is to develop theories that describe the fundamental and invariant phenomena of reading across orthographies, an alternative approach to model visual word recognition is offered. The dimensions of a possible universal model of reading, which outlines the common cognitive operations involved in orthographic processing in all writing systems, are discussed. © 2012 Cambridge University Press.

Repp B.H.,Haskins Laboratories
Human Movement Science | Year: 2010

To assess individual differences in basic synchronization skills and in perceptual sensitivity to timing deviations, brief tests made up of isochronous auditory sequences containing phase shifts or tempo changes were administered to 31 college students (most of them with little or no music training) and nine highly trained musicians (graduate students of music performance). Musicians showed smaller asynchronies, lower tapping variability, and greater perceptual sensitivity than college students, on average. They also showed faster phase correction following a tempo change in the pacing sequence. Unexpectedly, however, phase correction following a simple phase shift was unusually quick in both groups, especially in college students. It emerged that some of the musicians, who had previous experience with laboratory synchronization tasks, showed a much slower corrective response to phase shifts than did the other musicians. When these others were retested after having gained some task experience, their phase correction was slower than previously. These results show (1) that instantaneous phase correction in response to phase perturbations is more common than was previously believed, and suggest that (2) gradual phase correction is not a shortcoming but reflects a reduction in the strength of sensorimotor coupling afforded by practice. © 2009 Elsevier B.V.

Repp B.H.,Haskins Laboratories
Human Movement Science | Year: 2011

Continuous circle drawing is considered a paragon of emergent timing, whereas the timing of finger tapping is said to be event-based. Synchronization with a metronome, however, must to some extent be event-based for both types of movement. Because the target events in the movement trajectory are more poorly defined in circle drawing than in tapping, circle drawing shows more variable asynchronies with a metronome than does tapping. One factor that may have contributed to high variability in past studies is that circle size, drawing direction, and target point were prescribed and perhaps outside the comfort range. In the present study, participants were free to choose most comfortable settings of these parameters for two continuously drawn shapes, circles and infinity signs, while synchronizing with a regular or intermittently perturbed metronome at four different tempi. Results showed that preferred circle sizes were generally smaller than in previous studies but tended to increase as tempo decreased. Synchronization results were similar for circles and infinity signs, and similar to earlier results for circles drawn within a fixed template (Repp & Steinman, 2010). Comparison with tapping data still showed drawing to exhibit much greater variability and persistence of asynchronies as well as slower phase correction in response to phase shifts in the metronome. With comfort level ruled out as a factor, these differences can now be attributed more confidently to differences in event definition and/or movement dynamics. © 2010 Elsevier B.V.

When tapping is paced by an auditory sequence containing small phase shift (PS) perturbations, the phase correction response (PCR) of the tap following a PS increases with the baseline interonset interval (IOI), leading eventually to overcorrection (B. H. Repp, 2008). Experiment 1 shows that this holds even for fixed-size PSs that become imperceptible as the IOI increases (here, from 400 to 1200 ms). Earlier research has also shown (but only for IOI = 500 ms) that the PCR is proportionally smaller for large than for small PSs (B. H. Repp, 2002a, 2002b). Experiment 2 introduced large PSs and found smaller PCRs than in Experiment 1, at all of the same IOIs. In Experiments 3A and 3B, the author investigated whether the change in slope of the sigmoid function relating PCR and PS magnitudes occurs at a fixed absolute or relative PS magnitude across different IOIs (600, 1000, 1400 ms). The results suggest no clear answer; the exact shape of the function may depend on the range of PSs used in an experiment. Experiment 4 examined the PCR in the IOI range from 1000 to 2000 ms and found overcorrection throughout, but with the PCR increasing much more gradually than in Experiment 1. These results provide important new information about the phase correction process and pose challenges for models of sensorimotor synchronization, which presently cannot explain nonlinear PCR functions and overcorrection. Copyright © Taylor & Francis Group, LLC.

Iskarous K.,Haskins Laboratories
The Journal of the Acoustical Society of America | Year: 2010

The study investigated the articulatory basis of locus equations, regression lines relating F2 at the start of a Consonant-Vowel (CV) transition to F2 at the middle of the vowel, with C fixed and V varying. Several studies have shown that consonants of different places of articulation have locus equation slopes that descend from labial to velar to alveolar, and intercept magnitudes that increase in the opposite order. Using formulas from the theory of bivariate regression that express regression slopes and intercepts in terms of standard deviations and averages of the variables, it is shown that the slope directly encodes a well-established measure of coarticulation resistance. It is also shown that intercepts are directly related to the degree to which the tongue body assists the formation of the constriction for the consonant. Moreover, it is shown that the linearity of locus equations and the linear relation between locus equation slopes and intercepts originates in linearity in articulation between the horizontal position of the tongue dorsum in the consonant and to that in the vowel. It is concluded that slopes and intercepts of acoustic locus equations are measures of articulator synergy.

Krivokapic J.,University of Michigan | Krivokapic J.,Haskins Laboratories
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2014

Prosodic structure is a grammatical component that serves multiple functions in the production, comprehension and acquisition of language. Prosodic boundaries are critical for the understanding of the nature of the prosodic structure of language, and important progress has been made in the past decades in illuminating their properties. We first review recent prosodic boundary research from the point of view of gestural coordination. We then go on to tie in this work to questions of speech planning and manual and head movement. We conclude with an outline of a new direction of research which is needed for a full understanding of prosodic boundaries and their role in the speech production process. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Repp B.H.,Haskins Laboratories
Attention, Perception, and Psychophysics | Year: 2010

In music that is perceived as metrically structured, events coinciding with the main beat are called metrically accented. Are these accents purely cognitive, or do they perhaps represent illusory increases in perceived loudness or duration, caused by heightened attention to main beats? In four separate tasks, musicians tried to detect a small actual increase or decrease in the loudness or duration of a single note in melodies comprising 12 notes. Musical notation prescribed a meter (6/8) implying a main beat coinciding with every third note. Effects of metrical accentuation on detection performance were found in all four tasks. However, they reflected primarily an increase in sensitivity to physical changes in main beat positions, likely to be due to enhanced attention. There was no evidence of biases indicating illusory phenomenal accents in those positions. By contrast, and independent of metrical structure, pitch accents due to pitch contour pivots were often mistaken for increases in loudness. © 2010 The Psychonomic Society, Inc.

Kuperman V.,McMaster University | Van Dyke J.A.,Haskins Laboratories
Journal of Memory and Language | Year: 2011

This study is a large-scale exploration of the influence that individual reading skills exert on eye-movement behavior in sentence reading. Seventy-one non-college-bound 16-24. year-old speakers of English completed a battery of 18 verbal and cognitive skill assessments, and read a series of sentences as their eye-movements were monitored. Statistical analyses were performed to establish what tests of reading abilities were predictive of eye-movement patterns across this population and how strong the effects were. We found that individual scores in rapid automatized naming and word identification tests (i) were the only participant variables with reliable predictivity throughout the time-course of reading; (ii) elicited effects that superceded in magnitude the effects of established predictors like word length or frequency; and (iii) strongly modulated the influence of word length and frequency on fixation times. We discuss implications of our findings for testing reading ability, as well as for research of eye-movements in reading. © 2011 Elsevier Inc.

Loading Haskins Laboratories collaborators
Loading Haskins Laboratories collaborators