Port Orange, FL, United States
Port Orange, FL, United States

Time filter

Source Type

Harwell M.A.,Harwell Gentile and Associates | Gentile J.H.,Harwell Gentile and Associates | Johnson C.B.,ABR Inc. | Garshelis D.L.,Grand Rapids | Parker K.R.,Data Analysis Group
Human and Ecological Risk Assessment | Year: 2010

A comprehensive, quantitative risk assessment is presented of the toxicological risks from buried Exxon Valdez subsurface oil residues (SSOR) to a subpopulation of sea otters (Enhydra lutris) at Northern Knight Island (NKI) in Prince William Sound, Alaska, as it has been asserted that this subpopulation of sea otters may be experiencing adverse effects from the SSOR. The central questions in this study are: could the risk to NKI sea otters from exposure to polycyclic aromatic hydrocarbons (PAHs) in SSOR, as characterized in 2001-2003, result in individual health effects, and, if so, could that exposure cause subpopulation-level effects? We follow the U.S. Environmental Protection Agency (USEPA) risk paradigm by: (a) identifying potential routes of exposure to PAHs from SSOR; (b) developing a quantitative simulation model of exposures using the best available scientific information; (c) developing scenarios based on calculated probabilities of sea otter exposures to SSOR; (d) simulating exposures for 500,000 modeled sea otters and extracting the 99.9% quantile most highly exposed individuals; and (e) comparing projected exposures to chronic toxicity reference values. Results indicate that, even under conservative assumptions in the model, maximum-exposed sea otters would not receive a dose of PAHs sufficient to cause any health effects; consequently, no plausible toxicological risk exists from SSOR to the sea otter subpopulation at NKI. © Taylor & Francis Group, LLC.

Harwell M.A.,Harwell Gentile and Associates | Gentile J.H.,Harwell Gentile and Associates
Human and Ecological Risk Assessment | Year: 2014

The Exxon Valdez oil spill occurred more than two decades ago, and the Prince William Sound ecosystem has essentially recovered. Nevertheless, discussion continues on whether or not localized effects persist on sea otters (Enhydra lutris) at northern Knight Island (NKI) and, if so, what are the associated attributable risks. A recent study estimated new rates of sea otter encounters with subsurface oil residues (SSOR) from the oil spill. We previously demonstrated that a potential pathway existed for exposures to polycyclic aromatic hydrocarbons (PAHs) and conducted a quantitative ecological risk assessment using an individual-based model that simulated this and other plausible exposure pathways. Here we quantitatively update the potential for this exposure pathway to constitute an ongoing risk to sea otters using the new estimates of SSOR encounters. Our conservative model predicted that the assimilated doses of PAHs to the 1-in-1000th most-exposed sea otters would remain 1-2 orders of magnitude below the chronic effects thresholds. We re-examine the baseline estimates, post-spill surveys, recovery status, and attributable risks for this subpopulation. We conclude that the new estimated frequencies of encountering SSOR do not constitute a plausible risk for sea otters at NKI and these sea otters have fully recovered from the oil spill. © 2014 Mark A. Harwell and John H. Gentile.

Harwell M.A.,Harwell Gentile and Associates | Gentile J.H.,Harwell Gentile and Associates | Parker K.R.,Data Analysis Group | Murphy S.M.,Inc Environmental Research and Services | And 4 more authors.
Human and Ecological Risk Assessment | Year: 2012

Harlequin Ducks (Histrionicus histrionicus) were adversely affected by the Exxon Valdez oil spill (EVOS) in Prince William Sound (PWS), Alaska, and some have suggested effects continue two decades later. We present an ecological risk assessment evaluating quantitatively whether PWS seaducks continue to be at-risk from polycyclic aromatic hydrocarbons (PAHs) in residual Exxon Valdez oil. Potential pathways for PAH exposures are identified for initially oiled and never-oiled reference sites. Some potential pathways are implausible (e.g., a seaduck excavating subsurface oil residues), whereas other pathways warrant quantification. We used data on PAH concentrations in PWS prey species, sediments, and seawater collected during 2001-2008 to develop a stochastic individual-based model projecting assimilated doses to seaducks. We simulated exposures to 500,000 individuals in each of eight age/gender classes, capturing the variability within a population of seaducks living in PWS. Doses to the maximum-exposed individuals are ~400-4,000 times lower than chronic toxicity reference values established using USEPA protocols for sea-ducks. These exposures are so low that no individual-level effects are plausible, even within a simulated population that is orders-of-magnitude larger than exists in PWS. We conclude that toxicological risks to PWS seaducks from residual Exxon Valdez oil two decades later are essentially non-existent. © 2012 Copyright Taylor and Francis Group, LLC.

Reiter M.A.,Bethune-Cookman University | Matlock G.C.,National Oceanic and Atmospheric Administration | Gentile J.H.,Harwell Gentile and Associates | Harwell M.A.,Harwell Gentile and Associates | And 4 more authors.
Journal of Environmental Assessment Policy and Management | Year: 2013

Ecosystem management requires understanding society's goals for an ecosystem and managing for some optimal solution. Unlike terrestrial ecosystem managers, coastal and marine ecosystem management seldom integrates across sectors or scientific disciplines to achieve desired social benefits. An Integrated Ecosystem Assessment (IEA) considers the ecosystem (including humans) as a unit and can assist in setting goals, determining an ecosystem's ability to support ecological processes and society's desires, and predicting the outcome of alternatives. The use of Coupled Ecological-Societal Systems Models utilised within the Integrated Assessment and Ecosystem Management Protocol (IAEMP) allows managers to extend a graphical picture of risk hypotheses to forecast scenarios that can be analysed relative to management goals. Scenarios predicted to meet management goals are evaluated against management constraints to select the "optimal" option for a management action in an adaptive management process. The IAEMP thus helps characterise potential causes of environmental problems, select appropriate response options, and implement and evaluate the selected option, thereby either addressing the concern or improving the ecosystem model for future decisions. © 2013 Imperial College Press.

Harwell M.A.,Harwell Gentile and Associates | Gentile J.H.,Harwell Gentile and Associates | Cummins K.W.,Humboldt State University | Highsmith R.C.,National University of Science and Technology | And 4 more authors.
Human and Ecological Risk Assessment | Year: 2010

Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems. © Taylor & Francis Group, LLC.

Harwell M.A.,Harwell Gentile and Associates | Gentile John H. J.H.,Harwell Gentile and Associates | Parker K.R.,Data Analysis Group
Integrated Environmental Assessment and Management | Year: 2012

Ecological risk assessments need to advance beyond evaluating risks to individuals that are largely based on toxicity studies conducted on a few species under laboratory conditions, to assessing population-level risks to the environment, including considerations of variability and uncertainty. Two individual-based models (IBMs), recently developed to assess current risks to sea otters and seaducks in Prince William Sound more than 2 decades after the Exxon Valdez oil spill (EVOS), are used to explore population-level risks. In each case, the models had previously shown that there were essentially no remaining risks to individuals from polycyclic aromatic hydrocarbons (PAHs) derived from the EVOS. New sensitivity analyses are reported here in which hypothetical environmental exposures to PAHs were heuristically increased until assimilated doses reached toxicity reference values (TRVs) derived at the no-observed-adverse-effects and lowest-observed-adverse-effects levels (NOAEL and LOAEL, respectively). For the sea otters, this was accomplished by artificially increasing the number of sea otter pits that would intersect remaining patches of subsurface oil residues by orders of magnitude over actual estimated rates. Similarly, in the seaduck assessment, the PAH concentrations in the constituents of diet, sediments, and seawater were increased in proportion to their relative contributions to the assimilated doses by orders of magnitude over measured environmental concentrations, to reach the NOAEL and LOAEL thresholds. The stochastic IBMs simulated millions of individuals. From these outputs, frequency distributions were derived of assimilated doses for populations of 500 000 sea otters or seaducks in each of 7 or 8 classes, respectively. Doses to several selected quantiles were analyzed, ranging from the 1-in-1000th most-exposed individuals (99.9% quantile) to the median-exposed individuals (50% quantile). The resulting families of quantile curves provide the basis for characterizing the environmental thresholds below which no population-level effects could be detected and above which population-level effects would be expected to become manifest. This approach provides risk managers an enhanced understanding of the risks to populations under various conditions and assumptions, whether under hypothetically increased exposure regimes, as demonstrated here, or in situations in which actual exposures are near toxic effects levels. This study shows that individual-based models are especially amenable and appropriate for conducting population-level risk assessments, and that they can readily be used to answer questions about the risks to individuals and populations across a variety of exposure conditions. © 2012 SETAC.

Loading Harwell Gentile and Associates collaborators
Loading Harwell Gentile and Associates collaborators