Cambridge, MA, United States
Cambridge, MA, United States

Harvard University is a private Ivy League research university in Cambridge, Massachusetts, established in 1636. Its history, influence and wealth have made it one of the most prestigious universities in the world.Established originally by the Massachusetts legislature and soon thereafter named for John Harvard , Harvard is the United States' oldest institution of higher learning, and the Harvard Corporation is its first chartered corporation. Although never formally affiliated with any denomination, the early College primarily trained Congregation­alist and Unitarian clergy. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century Harvard had emerged as the central cultural establishment among Boston elites. Following the American Civil War, President Charles W. Eliot's long tenure transformed the college and affiliated professional schools into a modern research university; Harvard was a founding member of the Association of American Universities in 1900. James Bryant Conant led the university through the Great Depression and World War II and began to reform the curriculum and liberalize admissions after the war. The undergraduate college became coeducational after its 1977 merger with Radcliffe College.The University is organized into eleven separate academic units—ten faculties and the Radcliffe Institute for Advanced Study—with campuses throughout the Boston metropolitan area: its 209-acre main campus is centered on Harvard Yard in Cambridge, approximately 3 miles northwest of Boston; the business school and athletics facilities, including Harvard Stadium, are located across the Charles River in the Allston neighborhood of Boston and the medical, dental, and public health schools are in the Longwood Medical Area. Harvard has the largest financial endowment of any academic institution in the world, standing at $32.3 billion as of June 2013.Harvard is a large, highly residential research university. The nominal cost of attendance is high, but the University's large endowment allows it to offer generous financial aid packages. It operates several arts, cultural, and scientific museums, alongside the Harvard University Library which is the world's largest academic and private library system, comprising 79 individual libraries with over 18 million volumes.It has many eminent alumni. Eight U.S. presidents and several foreign heads of state have been graduates. It is also the alma mater of 62 living billionaires and 335 Rhodes Scholars, both the most in the country. To date, some 150 Nobel laureates have been affiliated as students, faculty, or staff. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Harvard University | Date: 2017-03-22

Provided herein are primers and primer systems having improved specificity and kinetics over existing primers, and methods of use thereof.


Patent
President And Fellows Of Harvard College | Date: 2017-10-04

Embodiments of various aspects described herein relate to methods, kits, and cell culture media for generation of podocytes from pluripotent stem (PS) cells, as well as cells produced by the same, and methods of use.


Patent
Procter, Gamble and President And Fellows Of Harvard College | Date: 2017-10-04

The present invention generally relates to microparticles and, in particular, to systems and methods for encapsulation within microparticles. In one aspect, the present invention is generally directed to microparticles containing entities therein, where the entities contain an agent that can be released from the microparticles, e.g., via diffusion. In some cases, the agent may be released from the microparticles without disruption of the microparticles. The entities may be, for instance, polymeric particles, hydrogel particles, droplets of fluid, etc. The entities may be contained within a fluid that is, in turn, encapsulated within the microparticle. The agent may be released from the entity into the fluid, and then from the fluid through the microparticle. In such fashion, the release of agent from the microparticle may be controlled, e.g., over relatively long time scales. Other embodiments of the present invention are generally directed to methods of making such microparticles, methods of using such microparticles, microfluidic devices for making such microparticles, and the like.


Patent
President And Fellows Of Harvard College and Boston University | Date: 2017-09-13

The invention provides novel and versatile classes of riboregulators, including inter alia activating and repressing riboregulators, switches, and trigger and sink RNA, and methods of their use for detecting RNAs in a sample such as a well and in modulating protein synthesis and expression.


Liberles S.D.,Harvard University
Current Opinion in Neurobiology | Year: 2015

Trace amine-associated receptors (TAARs) are G Protein-Coupled Receptors that function as vertebrate olfactory receptors. Like odorant receptors, TAARs constitute an ever-evolving sensory subsystem, with individual TAARs recognizing particular chemicals and some evoking stereotyped behaviors. Several TAARs mediate aversion or attraction towards volatile amines that include the mouse odor trimethylamine, the predator odor 2-phenylethylamine, and the death-associated odor cadaverine. TAAR-expressing sensory neurons achieve monoallelic receptor expression, use canonical olfactory signaling molecules, and target a dedicated olfactory bulb region. In mouse, TAAR4 and TAAR5 are encoded by adjacent genes and localize to adjacent glomeruli, yet mediate opposing behaviors. Future studies are needed to understand how TAAR-expressing sensory neurons engage higher-order neural circuits to encode odor valence. © 2015 Elsevier Ltd.


Staley K.,Harvard University
Nature Neuroscience | Year: 2015

Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these uncommon timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered so far are more remarkable for their diversity than their similarities. © 2015 Nature America, Inc. All rights reserved.


Masland R.H.,Harvard University
Neuron | Year: 2012

The mammalian retina consists of neurons of >60 distinct types, each playing a specific role in processing visual images. They are arranged in three main stages. The first decomposes the outputs of the rod and cone photoreceptors into ∼12 parallel information streams. The second connects these streams to specific types of retinal ganglion cells. The third combines bipolar and amacrine cell activity to create the diverse encodings of the visual world-roughly 20 of them-that the retina transmits to the brain. New transformations of the visual input continue to be found: at least half of the encodings sent to the brain (ganglion cell response selectivities) remain to be discovered. This diversity of the retina@s outputs has yet to be incorporated into our understanding of higher visual function.


Alvarez G.A.,Harvard University
Trends in Cognitive Sciences | Year: 2011

The visual system can only accurately represent a handful of objects at once. How do we cope with this severe capacity limitation? One possibility is to use selective attention to process only the most relevant incoming information. A complementary strategy is to represent sets of objects as a group or ensemble (e.g. represent the average size of items). Recent studies have established that the visual system computes accurate ensemble representations across a variety of feature domains and current research aims to determine how these representations are computed, why they are computed and where they are coded in the brain. Ensemble representations enhance visual cognition in many ways, making ensemble coding a crucial mechanism for coping with the limitations on visual processing. © 2011 Elsevier Ltd.


Wilson R.I.,Harvard University
Annual Review of Neuroscience | Year: 2013

In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities. Copyright ©2013 by Annual Reviews. All rights reserved.


Reid R.C.,Harvard University
Neuron | Year: 2012

" Receptive Fields, Binocular Interaction and Functional Architecture in the Cat@s Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper@s greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques.

Loading Harvard University collaborators
Loading Harvard University collaborators