Entity

Time filter

Source Type

Columbia, MO, United States

Rector R.S.,University of Missouri | Rector R.S.,Harry uman Memorial Veterans Medical Center | Thyfault J.P.,University of Missouri | Thyfault J.P.,Harry uman Memorial Veterans Medical Center
Journal of Applied Physiology | Year: 2011

While physical activity represents a key element in the prevention and management of many chronic diseases, we and others believe that physical inactivity is a primary cause of obesity and associated metabolic disorders. Unfortunately, accumulating evidence suggests that we have engineered physical activity out of our normal daily living activity. One such consequence of our sedentary and excessive lifestyle is nonalcoholic fatty liver disease (NAFLD), which is now considered the most common cause of chronic liver disease in Westernized societies. In this review, we will present evidence that physical inactivity, low aerobic fitness, and overnutrition, either separately or in combination, are an underlying cause of NAFLD. Copyright © 2011 the American Physiological Society. Source


Heden T.D.,University of Missouri | Morris E.M.,Harry uman Memorial Veterans Medical Center | Kearney M.L.,University of Missouri | Liu T.-W.,University of Missouri | And 4 more authors.
Applied Physiology, Nutrition and Metabolism | Year: 2014

The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h-1) than in LF- (7.60 ± 0.57 mmol·h-1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g-1 tissue) than in LF- (0.50 ± 0.16 nmol·g-1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. Source


Rector R.S.,University of Missouri | Thyfault J.P.,University of Missouri | Thyfault J.P.,Harry uman Memorial Veterans Medical Center | Uptergrove G.M.,University of Missouri | And 9 more authors.
Journal of Hepatology | Year: 2010

Background & Aims: In this study, we sought to determine the temporal relationship between hepatic mitochondrial dysfunction, hepatic steatosis and insulin resistance, and to examine their potential role in the natural progression of non-alcoholic fatty liver disease (NAFLD) utilising a sedentary, hyperphagic, obese, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. Methods: OLETF rats and their non-hyperphagic control Long-Evans Tokushima Otsuka (LETO) rats were sacrificed at 5, 8, 13, 20, and 40 weeks of age (n = 6-8 per group). Results: At 5 weeks of age, serum insulin and glucose and hepatic triglyceride (TG) concentrations did not differ between animal groups; however, OLETF animals displayed significant (p <0.01) hepatic mitochondrial dysfunction as measured by reduced hepatic carnitine palmitoyl-CoA transferase-1 activity, fatty acid oxidation, and cytochrome c protein content compared with LETO rats. Hepatic TG levels were significantly elevated by 8 weeks of age, and insulin resistance developed by 13 weeks in the OLETF rats. NAFLD progressively worsened to include hepatocyte ballooning, perivenular fibrosis, 2.5-fold increase in serum ALT, hepatic mitochondrial ultrastructural abnormalities, and increased hepatic oxidative stress in the OLETF animals at later ages. Measures of hepatic mitochondrial content and function including β-hydroxyacyl-CoA dehydrogenase activity, citrate synthase activity, and immunofluorescence staining for mitochondrial carbamoyl phosphate synthetase-1, progressively worsened and were significantly reduced at 40 weeks in OLETF rats compared to LETO animals. Conclusions: Our study documents that hepatic mitochondrial dysfunction precedes the development of NAFLD and insulin resistance in the OLETF rats. This evidence suggests that progressive mitochondrial dysfunction contributes to the natural history of obesity-associated NAFLD. © 2010 European Association for the Study of the Liver. Source


Matthew Morris E.,University of Missouri | Matthew Morris E.,Harry uman Memorial Veterans Medical Center | Fletcher J.A.,University of Missouri | Fletcher J.A.,Harry uman Memorial Veterans Medical Center | And 4 more authors.
Molecular and Cellular Endocrinology | Year: 2013

Nonalcoholic fatty liver disease (NAFLD) is now considered the most prevalent chronic liver disease, affecting over 30% of the US adult population. NAFLD is strongly linked to insulin resistance and is considered the hepatic manifestation of the metabolic syndrome. Activation of the renin-angiotensin-aldosterone system (RAAS) is known to play a role in the hypertension observed in the metabolic syndrome and also is thought to play a central role in insulin resistance and NAFLD. Angiotensin II (AngII) is considered the primary effector of the physiological outcomes of RAAS signaling, both at the systemic and local tissue level. Herein, we review data describing the potential involvement of AngII-mediated signaling at multiple levels in the development and progression of NAFLD, including increased steatosis, inflammation, insulin resistance, and fibrosis. Additionally, we present recent work on the potential therapeutic benefits of RAAS and angiotensin II signaling inhibition in rodent models and patients with NAFLD. © 2012 Elsevier Ireland Ltd. Source


Rector R.S.,Harry uman Memorial Veterans Medical Center | Rector R.S.,University of Missouri | Morris E.M.,Harry uman Memorial Veterans Medical Center | Morris E.M.,University of Missouri | And 8 more authors.
Hepatology | Year: 2013

Earlier reports suggest a link between mitochondrial dysfunction and development of hepatic insulin resistance. Here we used a murine model heterozygous (HET) for a mitochondrial trifunctional protein (MTP) gene defect to determine if a primary defect in mitochondrial long-chain fatty acid oxidation disrupts hepatic insulin action. Hyperinsulinemic-euglycemic clamps and signaling studies were performed for assessment of whole-body and hepatic insulin resistance/signaling. In addition, hepatic fatty acid oxidation and hepatic insulin action were assessed in vitro using primary hepatocytes isolated from HET and wildtype (WT) mice. In both hepatic mitochondria and isolated primary hepatocytes, heterozygosity of MTP caused an ∼50% reduction in mitochondrial fatty acid oxidation, a significantly impaired glucose disposal during the insulin clamp, and a markedly lower insulin-stimulated suppression of hepatic glucose production. HET mice also exhibited impaired insulin signaling, with increased hepatic phosphorylation of IRS2 (ser731) and reduced Akt phosphorylation (ser473) in both hepatic tissue and isolated primary hepatocytes. Assessment of insulin-stimulated FOXO1/phospho-FOXO1 protein content and PEPCK/G6Pase messenger RNA (mRNA) expression did not reveal differences between HET and WT mice. However, insulin-induced phosphorylation of GSK3β was significantly blunted in HET mice. Hepatic insulin resistance was associated with an increased methylation status of the catalytic subunit of protein phosphatase 2A (PP2A-C), but was not associated with differences in hepatic diacylglycerol content, activated protein kinase C-ε{lunate} (PKC-ε{lunate}), inhibitor κB kinase β (IKK-β), c-Jun N-terminal kinase (JNK), or phospho-JNK protein contents. Surprisingly, hepatic ceramides were significantly lower in the HET mice compared with WT. Conclusion: A primary defect in mitochondrial fatty acid β-oxidation causes hepatic insulin resistance selective to hepatic glycogen metabolism that is associated with elevated methylated PP2A-C, but independent of other mechanisms commonly considered responsible for insulin resistance. © 2013 American Association for the Study of Liver Diseases. Source

Discover hidden collaborations