Time filter

Source Type

Rochester, United Kingdom

Isolated teeth of Chiroptera from the Creechbarrow Limestone Formation of late Middle Eocene age are reported. Five distinct chiropteran taxa are present. A new species of Archaeonycteris is described, representing the last survivor of this archaic genus. Two rhinolophoid species include the hipposiderid Pseudorhinolophus schlosseri and Rhinolophidae gen. et sp. indet. Vespertilionoid bats are represented by one species Stehlinia quercyi. A single trigonid represents a small species, which could have affinity with the genus Ageina. © Museum and Institute of Zoology PAS. Source

Davies K.T.J.,Queen Mary, University of London | Davies K.T.J.,Natural History Museum in London | Bates P.J.J.,Harrison Institute | Maryanto I.,Indonesian Institute of Sciences | And 3 more authors.
PLoS ONE | Year: 2013

The vestibular system maintains the body's sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for multiple acquisitions of echolocation. © 2013 Davies et al. Source

Soisook P.,Prince of Songkla University | Karapan S.,Halabala Wildlife Research Station | Satasook C.,Prince of Songkla University | Bates P.J.J.,Harrison Institute
Zootaxa | Year: 2013

A new species of Murina belonging to 'suilla-group' is described based on two specimens collected with harp traps in lowland evergreen forest in the southernmost part of peninsular Thailand. Morphology and molecular (mitochondrial COI) data suggest that the new species is most closely related to M. eleryi, which is currently known from Indochina. The new species, however, can be distinguished by the size and shape of the upper canine, the shape of the upper and lower premolars, and the colour of the ventral pelage. Additional data on bacular morphology, echolocation, ecology, and dis-tribution are included. Copyright © 2013 Magnolia Press. Source

Hughes A.C.,University of Bristol | Satasook C.,Prince of Songkla University | Bates P.J.J.,Harrison Institute | Bumrungsri S.,Prince of Songkla University | Jones G.,University of Bristol
Journal of Biogeography | Year: 2011

Aim The causes of a zoogeographic divide in peninsular Thailand around the Isthmus of Kra have not been adequately resolved. We explored climatic, historical and geological perspectives to gain insights into factors that may have contributed to the development and maintenance of this zoogeographic transition, and to determine whether a faunal transition occurs for bats. Location Southeast Asia, focusing on the Thai Peninsula. Methods Spatial principal components analysis was used to determine the relationship between climate and species distribution patterns. We studied bats (order Chiroptera) because of their ability to bypass small-scale geophysical barriers. Spatial data on bat species distributions on the Thai Peninsula were analysed in relation to multivariate measures of climate to determine the possible influence of climatic zonation on distribution patterns. We assessed the effects of the interaction of climatic zonation with the highly dynamic environmental conditions the area has undergone in relation to species distribution patterns. Results A zoogeographic transition was found, with 44 species (out of 127) restricted to the north of the Isthmus of Kra and 29 restricted to the south, although there were relatively few abrupt changes in distribution at the exact position of the isthmus. Northern and southern species were associated with specific climatic conditions. Major transitions in the distribution of bat species exist at 6-6.5°N and 13-13.5°N, with a smaller peak at 11.0°N. These major peaks fall in the same areas as the borders of climatic zones, and the 6-6.5°N peak falls in the same area as a floristic divide (the Kangar-Pattani Line). Main conclusions On the mainland, climatic zones cause gradual changes in species distributions. However, in addition to climatic factors, repeated changes in the breadth of the Sunda Shelf during recent glacial cycles may have caused locally high extinction rates at narrow points on the peninsula, exacerbating transitions in species distribution patterns along the region, in the context of a peninsula effect that reduces opportunities for recolonization. © 2011 Blackwell Publishing Ltd. Source

Thong V.D.,University of Tubingen | Puechmaille S.J.,University College Dublin | Denzinger A.,University of Tubingen | Dietz C.,University of Tubingen | And 4 more authors.
Journal of Mammalogy | Year: 2012

A new species of Hipposideros is described from Vietnam. Morphologically, it is similar to taxa in the Hipposideros armiger complex but is substantially smaller. The new species, which has been found living sympatrically with H. armiger in Cat Ba National Park, is distinguished from it by size, acoustic characters, and differences in the mitochondrial DNA. Currently, the new taxon is known from Cat Ba Island in Ha Long Bay in northern Vietnam and from Chu Mom Ray National Park, which is situated on the mainland some 1,000 km to the south. It was collected in disturbed and primary forests. © 2012 American Society of Mammalogists. Source

Discover hidden collaborations