Harold Washington College

Washington, IL, United States

Harold Washington College

Washington, IL, United States
Time filter
Source Type

News Article | May 5, 2017
Site: www.prweb.com

LearnHowToBecome.org, a leading resource provider for higher education and career information, has released its list of the Best Colleges in Illinois for 2017. 50 four-year colleges were ranked, with Northwestern University, University of Chicago, Bradley University, Illinois Institute of Technology and Augustana College taking the top five spots on the list. 49 two-year schools were also selected; Carl Sandburg College, Illinois Central College, Richland Community College, Rend Lake College and Lincoln Land Community College were the top five. A complete list of schools is included below. “The schools on our list have shown that they offer outstanding educational programs that set students up for post-college success,” said Wes Ricketts, senior vice president of LearnHowToBecome.org. “Students exploring higher education options in Illinois can also look to these schools to provide top-quality resources that help maximize the overall educational experience.” To be included on the “Best Colleges in Illinois” list, all schools must be not-for-profit and regionally accredited. Each college is also evaluated metrics including annual alumni earnings, the opportunity for employment services and academic counseling, the selection of degree programs offered, financial aid availability and graduation rates. Complete details on each college, their individual scores and the data and methodology used to determine the LearnHowToBecome.org “Best Colleges in Illinois” list, visit: The Best Four-Year Colleges in Illinois for 2017 include: Augustana College Aurora University Benedictine University Blackburn College Bradley University Chicago State University Concordia University-Chicago DePaul University Dominican University Eastern Illinois University Elmhurst College Eureka College Governors State University Greenville College Illinois College Illinois Institute of Technology Illinois State University Illinois Wesleyan University Judson University Knox College Lake Forest College Lewis University Loyola University Chicago MacMurray College McKendree University Millikin University Monmouth College National Louis University North Central College North Park University Northern Illinois University Northwestern University Olivet Nazarene University Principia College Quincy University Rockford University Roosevelt University Rush University Saint Xavier University Southern Illinois University-Carbondale Southern Illinois University-Edwardsville Trinity Christian College Trinity International University-Illinois University of Chicago University of Illinois at Chicago University of Illinois at Springfield University of Illinois at Urbana-Champaign University of St Francis Western Illinois University Wheaton College The Best Two-Year Colleges in Illinois for 2017 include: Black Hawk College Carl Sandburg College City Colleges of Chicago - Harry S Truman College City Colleges of Chicago - Malcolm X College City Colleges of Chicago - Wilbur Wright College City Colleges of Chicago-Harold Washington College City Colleges of Chicago-Kennedy-King College City Colleges of Chicago-Olive-Harvey College City Colleges of Chicago-Richard J Daley College College of DuPage College of Lake County Danville Area Community College Elgin Community College Frontier Community College Harper College Heartland Community College Highland Community College Illinois Central College Illinois Valley Community College John A Logan College John Wood Community College Joliet Junior College Kankakee Community College Kaskaskia College Kishwaukee College Lake Land College Lewis and Clark Community College Lincoln Land Community College Lincoln Trail College MacCormac College McHenry County College Moraine Valley Community College Morton College Oakton Community College Olney Central College Parkland College Prairie State College Rend Lake College Richland Community College Rock Valley College Sauk Valley Community College Shawnee Community College South Suburban College Southeastern Illinois College Southwestern Illinois College Spoon River College Triton College Wabash Valley College Waubonsee Community College ### About Us: LearnHowtoBecome.org was founded in 2013 to provide data and expert driven information about employment opportunities and the education needed to land the perfect career. Our materials cover a wide range of professions, industries and degree programs, and are designed for people who want to choose, change or advance their careers. We also provide helpful resources and guides that address social issues, financial aid and other special interest in higher education. Information from LearnHowtoBecome.org has proudly been featured by more than 700 educational institutions.

Srivastava L.,Rutgers University | Srivastava L.,University of Georgia | Lapik Y.R.,University of Illinois at Chicago | Lapik Y.R.,Harold Washington College | And 2 more authors.
Molecular and Cellular Biology | Year: 2010

Biogenesis of eukaryotic ribosomes requires a number of RNA helicases that drive molecular rearrangements at various points of the assembly pathway. While many ribosome synthesis factors are conserved among all eukaryotes, certain features of ribosome maturation, such as U8 snoRNA-assisted processing of the 5.8S and 28S rRNA precursors, are observed only in metazoan cells. Here, we identify the mammalian DEAD box helicase family member Ddx51 as a novel ribosome synthesis factor and an interacting partner of the nucleolar GTP-binding protein Nog1. Unlike any previously studied yeast helicases, Ddx51 is required for the formation of the 3′ end of 28S rRNA. Ddx51 binds to pre-60S subunit complexes and promotes displacement of U8 snoRNA from pre-rRNA, which is necessary for the removal of the 3′ external transcribed spacer from 28S rRNA and productive downstream processing. These data demonstrate the emergence of a novel factor that facilitates a pre-rRNA processing event specific for higher eukaryotes. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Huber P.,University of Illinois at Chicago | Crum T.,University of Illinois at Chicago | Crum T.,Benedictine University | Clary L.M.,University of Illinois at Chicago | And 5 more authors.
Cellular and Molecular Life Sciences | Year: 2013

T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well understood. Here we examine whether SUMOylation affects the function of the C. elegans Tbx2 sub-family T-box factor TBX-2. We have previously shown that TBX-2 interacts with the E2 SUMO-conjugating enzyme UBC-9, and that loss of TBX-2 or UBC-9 produces identical defects in ABa-derived pharyngeal muscle development. We now show that TBX-2 is SUMOylated in mammalian cell assays, and that both UBC-9 interaction and SUMOylation depends on two SUMO consensus sites located in the T-box DNA binding domain and near the TBX-2 C-terminus, respectively. In co-transfection assays, a TBX-2:GAL4 fusion protein represses expression of a 5xGal4:tk:luciferase construct. However, this activity does not require SUMOylation, indicating SUMO is not generally required for TBX-2 repressor activity. In C. elegans, reducing SUMOylation enhances the phenotype of a temperature-sensitive tbx-2 mutant and results in ectopic expression of a gene normally repressed by TBX-2, demonstrating that SUMOylation is important for TBX-2 function in vivo. Finally, we show mammalian orthologs of TBX-2, Tbx2, and Tbx3, can also be SUMOylated, suggesting SUMOylation may be a conserved mechanism controlling T-box factor activity. © 2013 The Author(s).

Milton A.C.,University of Illinois at Chicago | Packard A.V.,University of Illinois at Chicago | Clary L.,University of Illinois at Chicago | Clary L.,Harold Washington College | Okkema P.G.,University of Illinois at Chicago
Developmental Biology | Year: 2013

T-box genes are frequently expressed in dynamic patterns during animal development, but the mechanisms controlling expression of these genes are not well understood. The Caenorhabditis elegans T-box gene tbx-2 is essential for development of the ABa-derived pharyngeal muscles, specification of neural cell fate in the HSN/PHB lineage, and adaptation in olfactory neurons. The tbx-2 expression pattern is complex, and expression has been described in pharyngeal precursors and body wall muscles during embryogenesis, and amphid sensory neurons and pharyngeal neurons in adults. To examine mechanisms regulating tbx-2 gene expression, we performed an RNAi screen of transcription factor genes in strains containing a Ptbx-2::gfp reporter and identified the Nuclear Factor Y (NF-Y) complex as a negative regulator of tbx-2 expression. NF-Y is a heterotrimeric CCAAT-binding complex consisting of A-C subunits, and reduction of the NF-Y subunits nfya-1, nfyb-1, or nfyc-1 by RNAi or using mutants results in ectopic Ptbx-2::gfp expression in hypodermal seam cells and gut. Mutation of two CCAAT-boxes in the tbx-2 promoter results in a similar pattern of ectopic Ptbx-2::gfp expression, suggesting NF-Y directly represses the tbx-2 promoter. tbx-2 mRNA is moderately increased in nfya-1 null mutants, indicating NF-Y represses expression of endogenous tbx-2. Finally we identify and characterize a second-site mutation that enhances lethality of a temperature sensitive tbx-2 mutant and show that this mutation is a deletion in the nfyb-1 gene. Together, these results identify NF-Y as an important regulator of tbx-2 function in vivo. © 2013 Elsevier Inc.

Salaita K.,Northwestern University | Salaita K.,Emory University | Amarnath A.,Harold Washington College | Higgins T.B.,Harold Washington College | Mirkin C.A.,Northwestern University
Scanning | Year: 2010

Dip-pen nanolithography (DPN) is a scanning probe-based technique that allows for direct delivery of molecules to a range of substrates with sub-50 nm resolution. This study describes the effect of organic solvent vapor on the deposition rate and feature size of nanostructures deposited via DPN. The transport rate of model molecular inks, 1-octadecanethiol, and 16-mercaptohexadecanoic acid were examined under atmospheres of ethanol, methanol, hexane, and dichloromethane. In all cases, presence of an organic vapor increased deposition rate and feature size, in some cases by an order of magnitude. This underscores how the environment can be used to regulate molecular transport rates in a DPN experiment. © 2010 Wiley Periodicals, Inc.

McMorris F.R.,Illinois Institute of Technology | McMorris F.R.,University of Louisville | Mulder H.M.,Erasmus University Rotterdam | Ortega O.,Harold Washington College
Networks | Year: 2012

A p-value of a sequence π = (x 1, x 2,⋯, x k) of elements of a finite metric space (X, d) is an element x for which ∑ i=1 k dp(x,xi) is minimum. The function ℓ p with domain the set of all finite sequences defined by ℓ p(π) = {x: x is a p-value of π} is called the ℓ p-function on X. The ℓ p-functions with p = 1 and p = 2 are the well-studied median and mean functions respectively. In this article, the ℓ p-function on finite trees is characterized axiomatically. © 2011 Wiley Periodicals, Inc.

Compton O.C.,Northwestern University | Egan M.,Harold Washington College | Kanakaraj R.,Prosser Career Academy | Higgins T.B.,Harold Washington College | Nguyen S.T.,Northwestern University
Journal of Chemical Education | Year: 2012

Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory sessions, requiring cooperation between all students in the classroom. The experiment is suitable for either high school students with a general chemistry background or undergraduate students in introductory general chemistry courses, as a number of fundamental topics can be discussed with this simple, inexpensive, and real-world-oriented project. © 2012 The American Chemical Society and Division of Chemical Education, Inc.

Chawla R.,Phoenix Childrens Hospital | Alden T.D.,Northwestern University | Bizhanova A.,Harold Washington College | Kadakia R.,Northwestern University | And 2 more authors.
Thyroid | Year: 2015

Background: Congenital hyperthyroidism can be a cause of failure to thrive, hyperactivity, developmental delay, and craniosynostosis during infancy. Most commonly, the condition occurs in the setting of maternal autoimmune thyroid disease. Rarely, congenital hyperthyroidism can also occur secondary to activating mutations within the thyrotropin (TSH) receptor. Patient Findings: A Hispanic male infant presented at age 6 months with severe thyrotoxicosis. At the time of presentation he was being evaluated for squamosal suture synostosis and he was noted to have significant developmental delays. Summary: The patient's thyrotoxicosis was initially treated with antithyroid medication, and he subsequently underwent craniosynostosis repair leading to neurodevelopmental improvement. DNA from the patient and his parents was submitted for mutational analysis of exons 9 and 10 of the TSH receptor. He was found to carry a monoallelic transition 1895C>T in exon 10 that resulted in the substitution of threonine at position 632 by isoleucine (T32I). This mutation resulted in constitutive activation of the TSH receptor. Neither parent carried this mutation indicating that the child has acquired a de novo germline mutation. Conclusions: We report the first case of squamosal suture craniosynostosis in a patient with non-autoimmune hyperthyroidism. Squamosal suture craniosynotosis is rare, often has a subtle presentation, and should be considered in all patients with this condition because prompt treatment of hyperthyroidism and craniosynotosis repair can lead to normalization of neurodevelopment. © Mary Ann Liebert, Inc. 2015.

Higgins T.B.,Harold Washington College
ACS Symposium Series | Year: 2013

The role of community colleges in higher education is important and growing, especially with respect to expanding STEM education and undergraduate research opportunities for underrepresented and non-traditional students. The STEM-ENGINES Undergraduate Research Collaborative was an NSF-funded project that provided authentic undergraduate research opportunities for 285 community college undergraduates in the Chicago area. The impacts of this early research experience were increased skill development, enhanced transfer rates, and students' greater realization of their potential to earn STEM degrees. Students from underrepresented groups and first-generation college students were strongly affected, as were their community college faculty mentors. © 2013 American Chemical Society.

Loading Harold Washington College collaborators
Loading Harold Washington College collaborators