Harlan Cytotest Cell Research GmbH

Roßdorf, Germany

Harlan Cytotest Cell Research GmbH

Roßdorf, Germany
SEARCH FILTERS
Time filter
Source Type

Schuler D.,Harlan Laboratories Ltd | Chevalier H.-J.,AnaPath GmbH | Merker M.,Harlan Cytotest Cell Research GmbH | Morgenthal K.,Harlan Laboratories Ltd | And 5 more authors.
Journal of Toxicologic Pathology | Year: 2011

Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m 3), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m3, 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m3. At 1 and 4 mg/m3, exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide. © 2011 The Japanese Society of Toxicologic Pathology.


Weisensee D.,Philip Morris Research Laboratories GmbH | Weisensee D.,CellSystems GmbH | Poth A.,Harlan Cytotest Cell Research GmbH | Roemer E.,Philip Morris International | And 2 more authors.
ATLA Alternatives to Laboratory Animals | Year: 2013

In vitro cell transformation assays detect transformed cells that have acquired the distinct characteristics of malignant cells and thus model one stage of in vivo carcinogenesis. These assays have been proposed as surrogate models for predicting the non-genotoxic carcinogenic potential of chemicals. The Bhas 42 cell transformation assay, a short-term assay that uses v-Ha-ras-transfected Balb/c 3T3 cells, can detect the tumour promoter-like activities of chemicals, but has not previously been used with cigarette smoke. The particulate phase of cigarette smoke (total particulate matter .TPM) is known to induce tumours in vivo in the mouse skin painting assay. Therefore, we investigated the ability of this Bhas cell assay to form morphologically transformed foci in vitro when repeatedly challenged with TPM from a standard research cigarette. TPM induced a dose-dependent increase in Type III foci, and a significant increase (up to 20-fold) in focus formation at moderately toxic concentrations between 5 and 60μg TPM/ml, with a peak at 20μg/ml. Three batches of TPM were tested in three independent experiments. Precision (repeatability and reproducibility) was calculated by using 0, 5, 10, and 20μg TPM/ml. Repeatability and reproducibility, expressed as the relative standard deviation obtained from the normalised slopes of the dose-response curves, were 17.2% and 19.6%, respectively; the slopes were 0.7402 ± 0.1247, 0.9347 ± 0.1316, and 0.8772 ± 0.1767 (increase factor&z.ast;ml/mg TPM; mean ± SD); and the goodness of fit (r2) of the mean slopes, each derived from n = 6 repeats, was 0.9449, 0.8198, and 0.8344, respectively. This in vitro assay with Bhas 42 cells, which are regarded as already initiated in the two-stage paradigm of carcinogenesis (initiation and promotion), is able to detect cell transformation induced by cigarette smoke in a dose-dependent manner with a high sensitivity and good precision. Because this assay is fast and yields reliable results, it may be useful in product assessment, as well as for further investigation of the non-genotoxic carcinogenic activity of tobacco smoke-related test substances.


Adler S.,Federal Institute for Risk Assessment BfR | Basketter D.,DABMEB Consultancy Ltd | Creton S.,NC3Rs | Pelkonen O.,University of Oulu | And 53 more authors.
Archives of Toxicology | Year: 2011

The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated. © 2011 Springer-Verlag.


Sakai A.,Hatano Research Institute | Sasaki K.,Hatano Research Institute | Hayashi K.,Hatano Research Institute | Muramatsu D.,Hatano Research Institute | And 18 more authors.
Mutation Research - Genetic Toxicology and Environmental Mutagenesis | Year: 2011

The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[. a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed. © 2011 Elsevier B.V.


Reifferscheid G.,Federal Institute of Hydrology BfG | Maes H.M.,RWTH Aachen | Allner B.,GOBIO GmbH | Badurova J.,Vyzkumny ustav vodohospodarsky T. G. Masaryka | And 25 more authors.
Environmental and Molecular Mutagenesis | Year: 2012

An international round-robin study on the Ames fluctuation test [ISO 11350, 2012], a microplate version of the classic plate-incorporation method for the detection of mutagenicity in water, wastewater and chemicals was performed by 18 laboratories from seven countries. Such a round-robin study is a precondition for both the finalization of the ISO standardization process and a possible regulatory implementation in water legislation. The laboratories tested four water samples (spiked/nonspiked) and two chemical mixtures with and without supplementation of a S9-mix. Validity criteria (acceptable spontaneous and positive control-induced mutation counts) were fulfilled by 92-100%, depending on the test conditions. A two-step method for statistical evaluation of the test results is proposed and assessed in terms of specificity and sensitivity. The data were first subjected to powerful analysis of variance (ANOVA) after an arcsine-square-root transformation to detect significant differences between the test samples and the negative control (NC). A threshold (TH) value based on a pooled NC was then calculated to exclude false positive test results. Statistically, positive effects observed by the William's test were considered negative, if the mean of all replicates of a sample did not exceed the calculated TH. By making use of this approach, the overall test sensitivity was 100%, and the test specificity ranged from 80 to 100%. © 2012 Wiley Periodicals, Inc. © 2012 Wiley Periodicals, Inc.


Ashton R.,Ashton Editorial Consulting | De Wever B.,ALTEXA Development | Fuchs H.W.,Biotechnologie Vertrieb GmbH | Gaca M.,GandD Center | And 4 more authors.
Altex | Year: 2014

Despite changing attitudes towards animal testing and current legislation to protect experimental animals, the rate of animal experiments seems to have changed little in recent years. On May 15-16, 2013, the In Vitro Testing Industrial Platform (IVTIP) held an open meeting to discuss the state of the art in alternative methods, how companies have, can and will need to adapt and what drives and hinders regulatory acceptance and use. Several important points arose from the meeting. First, industry and regulatory bodies should not wait for complete suites of alternative tests to become available, but should begin working with methods available right now (e.g., mining of existing animal data to direct future studies, implementation of alternative tests wherever scientifically valid rather than continuing to rely on animal tests) in non-animal and animal integrated strategies to reduce the numbers of animals tested. Second, sharing of information (communication), harmonization and standardization (coordination), commitment and collaboration are all required to improve the quality and speed of validation, acceptance and implementation of tests. Finally, how alternative methods can be used in research and development before formal implementation in regulations should be considered. Here we present the conclusions on what can be done already and suggest some solutions and strategies for the future.


Creton S.,National Center for the Replacement | Aardema M.J.,Marilyn Aardema Consulting LLC | Carmichael P.L.,Colworth Science Park | Harvey J.S.,Glaxosmithkline | And 12 more authors.
Mutagenesis | Year: 2012

Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting. © The Author 2011.


Kasten P.,University of Heidelberg | Kasten P.,TU Dresden | Beverungen M.,University of Heidelberg | Beverungen M.,Harlan Cytotest Cell Research GmbH | And 5 more authors.
Cells Tissues Organs | Year: 2012

Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF165- transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. Copyright © 2012 S. Karger AG, Basel.


Pothmann D.,Harlan Laboratories Ltd | Simar S.,Institute Pasteur Of Lille | Schuler D.,Harlan Laboratories Ltd | Dony E.,Harlan Cytotest Cell Research GmbH | And 8 more authors.
Particle and Fibre Toxicology | Year: 2015

Background: Graphistrength© C100 multiwalled carbon nanotubes (MWCNT) provide superior electrical and mechanical properties for various applications. The evaluation of the intrinsic hazard properties of Graphistrength© C100 is an essential step for safe use. A general feature of multiwalled carbon nanotubes after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. Methods: After investigating different parameters for the aerosol generation and performing a 5-day inhalation range finding study, male and female Wistar rats were exposed nose-only for 90 days to target concentrations of 0.05, 0.25 and 5.0 mg/m3 air of Graphistrength© C100 and sacrificed 24 h and 90 days after the last exposure. Broncho-alveolar lavage fluid (BALF) was also collected and analyzed for inflammatory parameters. Twenty-four hours post-exposure, chromosomal aberrations in the bone marrow cells were evaluated by the micronucleus test and DNA damages in the lung, kidney and liver cells by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay. All studies were performed according to the OECD test guidelines. Results: An inflammatory lung reaction and the release of inflammatory factors in the BALF were observed in all rats exposed to 5.0 mg/m3, associated with changes in the differential white blood cells counts. The slight changes in BALF parameters at 0.25 mg/m3 recovered and signs of lung clearance of the MWCNT were observed. No pathological changes were observed on the pleura. Neither increase in the number of micronucleated polychromatic erythrocytes nor increase in percent DNA damage were observed at any concentration. Conclusions: Lung inflammation characteristic of an overload with insoluble particles was observed after a 90-day exposure to 5.0 mg/m3 of Graphistrength© C100. Clear signs of clearance and recovery were observed at 0.25 mg/m3. No genotoxicity was detected locally in lung and distally in bone marrow, liver and kidney. Therefore, Graphistrength© C100 appears of low concern in term of local and systemic genotoxicity and a No-Observed Adverse Effect Concentration (NOAEC) of 0.25 mg/m3 (0.28 mg/m3 as actual concentration) was established for the repeated-dose toxicity. © 2015 Pothmann et al.

Loading Harlan Cytotest Cell Research GmbH collaborators
Loading Harlan Cytotest Cell Research GmbH collaborators