Time filter

Source Type

Feng X.,Harbin Electrical Power Equipment Co. | Wu D.,Zhejiang University | Yang L.,Harbin Electrical Power Equipment Co. | Jia Y.,Harbin Electrical Power Equipment Co.
Paiguan Jixie Gongcheng Xuebao/Journal of Drainage and Irrigation Machinery Engineering | Year: 2016

As high-end equipment in pump industry, CNP1000 shaft sealed reactor coolant pump (RCP) in the primary loop system of pressurized water reactor (PWR) in a nuclear power plant is the only equipment which cannot be manufactured domestically. Therefore, the independent design, ma-nufacturing and test of this kind of pump are important and difficult tasks in promoting the nationalization of nuclear technology in China. The domestic technological situation and structural characteristics of 1000 MW shaft sealed RCP are introduced, and the design principle and technical implementation requirement are elaborated in terms of pressure retaining boundary, hydraulic components, pump rotor system, heat insulation subassembly, shaft seal, standstill seal, lower guide bearings, thrust bearing, integrated oil pump, oil seal, auxiliary system and key equipment in detail. Through an analysis on export restriction and application prospect of various types of RCP, it is shown that shaft sealed RCP has more strength in export and will occupy a dominant position in the nuclear equipment market for a long time. Presently, several key technologies, such as shaft seal, hydraulic components, and full-load test have been nationalized in a few domestic factories, but the theoretical principle of RCP is still not well established and needs to be explored further. Hence, as an important mission, the nationalization of RCP still requires a long time to be tackled. © 2016, Editorial Department of Journal of Drainage and Irrigation Machinery Engineering. All right reserved.


Liu X.,Harbin Electrical Power Equipment Co. | Bu Y.,Harbin Electrical Power Equipment Co. | Qiu G.,Harbin Electrical Power Equipment Co. | Feng X.,Harbin Electrical Power Equipment Co.
Paiguan Jixie Gongcheng Xuebao/Journal of Drainage and Irrigation Machinery Engineering | Year: 2014

To check the vane profile of the diffuser of a 1000 MW reactor coolant pump (RCP), which is machined by using numerical control machining technique, a set of approaches for measuring and assessing vane profile of a through-flow-component are proposed. Through adopting a reverse engineering analysis software PolyWorks together with a three coordinates measuring machine, the three coordinates of vane pressure and suction sides of the diffuser are measured and the root mean square of deviation of the measured profile from the designed one is figured out. Based on a statistic and theoretical analysis on the measured profile data of the vane pressure and suction sides near the vane leading and trailing edges, a formula for estimating deviation angel of pressure or suction side profile Δβ is put forward. Moreover, a correlation for deviation angle between two vanes Δφ, and a correction formula for deviation of individual vane profile K are established. This set of methods can accurately and effectively inspect the vane profiles of a hydraulic machine and assure each profile to have the same wrap angle. Based on the measurement and evaluation of vane profiles of the diffuser of the RCP for Fuqing and Fangjiashan Nuclear Plant, all the deviation errors are allowable. As a result, the tested performance of the RCP shows that the flow rate and head deviate from the design specifications by ±2.5% and ±1.5%, respectively. ©, Editorial Department of Journal of Drainage and Irrigation Machinery Engineering. All right reserved.


Jia Y.,Harbin Institute of Technology | Jia Y.,Harbin Electrical Power Equipment Co. | Wei X.,State Key Laboratory of Hydropower Equipment
Paiguan Jixie Gongcheng Xuebao/Journal of Drainage and Irrigation Machinery Engineering | Year: 2015

In order to design and validate the auxiliary impeller required by the cycle power of the oil-lubricated external circulation cooling system on the reactor coolant pump's bi-directional thrust bea-ring, the CFD method is applied to present a numerical analysis for the pressure feature and flow rate within the oil impeller. The objective is to demonstrate the vector distribution of the relative velocity on the center surface of the flow path, and to verify the possibility of creating any flush angle from the inlet flow of the vane, the pros and cons of the vane shape design and how well it functionally matches the vane. The numerical analysis intuitively reflects the flow parameters and patterns generated by the designed shape of the vane, indicates the fact that the velocity at the vane's inlet mainly affects the tangent angle; thus, effectively lowers the damaging impact on any system devices located adjacent to the rear outlet of the vane. Through simulation of the oil-lubricating circulation, numerical analysis are comparatively analyzed with the testing results, for all 5 complete working processes, deviations are uniformly less than 5% and precisely satisfied lubricating oil's flow, head, zero-impact on flows and other operating requirements. This paper concludes the practical application of a simplified numerical analysis and reasoning could replace the repetitive testing employed in the traditional design process for axial auxiliary impellers. It has been successfully applied in the design of reactor coolant pump. ©, 2015, Editorial Department of Journal of Drainage and Irrigation Machinery Engineering. All right reserved.


Lv Y.H.,Harbin Engineering University | Gai D.Y.,Harbin Engineering University | Song Y.Q.,Harbin Electrical Power Equipment Co | Ma X.Q.,Harbin Engineering University
Strength of Materials | Year: 2015

Carburizing and shot peening are commonly accepted surface treatment methods used to improve the surface properties of materials. Researchers are making attempts to optimize their application for obtaining superior mechanical properties. However, there are few comprehensive reports on this problem. The combination of carburizing and shot peening is used for the surface treatment of 17-CrNi6-Mo steel. This is followed by detailed analysis employing optical and scanning electron microscopy, microhardness testing, surface roughness measurements, and the measurement of residual stresses using X-ray diffraction. The results show that shot peening can further improve the microstructure and surface properties of carburized specimens since it induced the phase transformation of a carburized layer. Moreover, simulation of the phase composition variation curve along with the change in the carbon content and the continuous cooling transformation (CCT) curve of the specimen is also presented. The results are used to elucidate the carburizing effect on a 17-CrNi6-Mo steel surface microstructure. © 2015 Springer Science+Business Media New York


Lu Y.-P.,Harbin University of Science and Technology | Liu C.-Y.,Harbin University of Science and Technology | Li M.-Q.,Harbin Electrical Power Equipment Co. | Li J.-T.,Harbin Electrical Power Equipment Co.
Dianji yu Kongzhi Xuebao/Electric Machines and Control | Year: 2012

In order to obtain the flow characteristics of cooling air in the stator, rotor and the magnetic pole gap of some salient motor, the 1/8 structure of whole motor was established, including three-dimensional physical model of the ventilation system of stator and rotor. The three-dimensional turbulent governing equations of time-averaged flow field were calculated numerically by the Fluent software for (computational fluid dynamics, CFD) calculation based on some corresponding boundary conditions. Distribution characteristics of air velocity and static pressure in salient motor ventilation system were received and fluid flow characteristics of rotor pole gap and stator radial ventilation ducts were mainly analyzed. The result shows that air flow rate inside the ventilation ducts in front of the stator is small and the air flow which accounts for 26% of the total air flow rate inside the pressure finger gap is large, which is beneficial to reduce stator peak temperature, and flow distribution of each part in the motor such as stator and rotor gap is reasonable.


Liang Y.,Harbin University of Science and Technology | Bian X.,Harbin University of Science and Technology | Yu H.,Harbin University of Science and Technology | Li C.,Harbin Electrical Power Equipment Co.
IEEE Transactions on Industrial Electronics | Year: 2015

Large double-canned induction motor has high power density and usually works in a closed environment. Compared with a common induction motor, there are many contacted metallic parts in the stator end region of a large double-canned induction motor, in which eddy current will exist not only in end metallic parts themselves but also between contacted metallic parts. Evaluation of eddy-current losses in stator end metallic parts and reasonable end structure design is the premise of ensuring the safe and stable operation of a large double-canned induction motor. A 5-MW-scale double-canned induction motor is taken as an example in this paper, and the 3-D eddy-current field finite-element calculation model of its stator end is established and solved. Then, the eddy current in stator end metallic parts and between different contacted stator end metallic parts is analyzed in detail. On this basis, the eddy-current losses' decrease method through cutting off the eddy-current path between contacted stator end metallic parts is proposed and validated by experimental results of temperature. © 2015 IEEE.


Sha Y.,Zhejiang University of Science and Technology | Liu X.,Harbin Electrical Power Equipment Company Ltd
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering | Year: 2014

In order to study the characteristics of the flow field and gas-liquid two-phase flow hydrotransport in vortex pumps, the performance test and the measurement of flow field in volute at optimal operating condition with five-hole probes were conducted on a self-built vortex pump (32WB8-12). Based on these experiments, the qv-H, qv-P, qv-η, qv-NPSHc performance curves and the absolute velocity v, circumferential velocity vu, radial velocity vr, axial velocity vz, and the flow static pressure ps, on the 5 measuring points were obtained. The obtained parabolic qv-NPSH performance curve shows the opposite tendency compared to the centrifugal pump. The mechanical properties of the four kinds of forces in gas-liquid two-phase flow were analyzed with the Navier-Stokes Equation, and the results indicated the constraint relationship between performance and mechanical factors. Furthermore, the principle of gas-liquid flow hydrotransport and the difference between cavitating current and gas-liquid flow were also presented. The interior flow field in the pump under the optimal condition has been numerically simulated by FLUENT software based on the renormalization group k-ε turbulence model (RNG k-ε model) through which the pressure and velocity as well as gasvolume distribution of three cross sections in the vortex pump were obtained. The experimental results also showed that axial vortex was the dominant flow in the pump inlet, and the airflow gathered in the volute inlet with low pressure. The difference of molecule size, shape, and elastic modulus between airflow and liquid leads to the variations of the inertia, friction, and buoyancy forces in flow field, which explains the relationship between performance and parameters of the internal flow and gas-liquid suction as well as the head formation principle of vortex pump. The numerical results are in good agreement with flow field measurement data. The results show that the internal flow in the vortex pump mainly consists of through flow. The flow in the impeller region is of forced vortex characters, and the flow in volute is similar to the combined vortex with backflow, which is a non-axisymmetric unsteady flow with quite high turbulence intensity. All these should be main reasons for the relatively low efficiency of the vortex pump. The distortional principle of velocity field and the channel streamline with two-phase flow inside the vortex pump have been investigated in this article. This research provides a model of gas-liquid two-phase flow and cavitating current in vortex pump.


Zheng R.G.,Shenyang University | Zhang X.X.,Harbin Electrical Power Equipment Co.
Applied Mechanics and Materials | Year: 2013

Sliding wear behavior of the (NbSe2+SiC)/Cu composite was studied on a pin-on-disc wear tester under various electrical currents and applied loads. The worn surfaces were characterized using scanning electron microscopy and energy dispersive spectroscopy to probe the wear mechanisms. Experiment results show that the friction coefficient and wear rate of (NbSe2+SiC)/Cu composite increased with increasing of the normal load. Adhesive wear, abrasive wear and fatigue wear were the main wear mechanism during the sliding process. © (2013) Trans Tech Publications, Switzerland.


Liang Y.-P.,Harbin University of Science and Technology | Hu Y.-L.,Harbin University of Science and Technology | Liu X.,Harbin Electrical Power Equipment Co. | Li C.-X.,Harbin Electrical Power Equipment Co.
IEEE Transactions on Industrial Electronics | Year: 2014

The canned induction motors are widely used in pharmaceutical, chemical, and nuclear fields. It is necessary to calculate the losses, particularly the can losses, accurately. Combining steady-state ac magnetic 2-D finite-element solutions with the can harmonic loss formulas derived in this paper, the can losses under rated voltage in various operating conditions are obtained. Then, the calculation results under various voltages in no-load condition are compared with the experiment data, which provides the basis for the further performance analysis and motor design. © 1982-2012 IEEE.


Sha Y.,Zhejiang University of Science and Technology | Liu X.,Harbin Electrical Power Equipment Company Ltd
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering | Year: 2013

In order to study the solid-liquid two-phase flow hydrotransport characteristics of vortex pump, the energy consumption of pump caused by internal resistance is divided into two parts: the mechanical losses and hydraulic losses, also the calculation of mechanical efficiency ηm and hydraulic efficiency ηf is elaborated. This paper investigates the 32WB8-12 vortex pump's parameter of hydraulic design structure. The crops solid-liquid two-phase flow hydrotransport experiment plan is established, meanwhile the performance experiments of clean water, rapeseed, wheat and soya hydrotransport are conducted on a self-built vortex pump, after taking above experiments that the qv-H, qv-P, qv-η, qv-NPSHc curves are obtained. The experimental results indicates the pump's hydrotransport efficiency of spherical rapeseed is higher than clean water's and the others' two-phase flow. The pump anti-cavitations are reduced with the solid-liquid two-phase flow hydrotransport. The head and hydrotransport efficiency of pump ordinarily decrease with increased particle size under the condition of constant particle concentration. Moreover, the hydraulic efficiency of transporting regular sphere shape particles such as rapeseed is higher than the clean water's, wheat's and soya's. The characteristics are considered based on the slip flow with the principle of relativity that sliding liner and rotary motion between particles and fluid flow. Associated with particle's size and shape, the particles suffered inertial force, friction force and buoyant force have significance on fluid field, all above information also proved that internal two-phase flow of vortex pump meet the principle of distortion velocity. From the experimental data analyses, some explanations are given for the link and changing trends between the external characteristics and internal flow nature. This research can provide a reference for building the model of fluid solid two-phase flow in vortex pump.

Loading Harbin Electrical Power Equipment Co collaborators
Loading Harbin Electrical Power Equipment Co collaborators