Hanyang Biomedical Research Institute

Seoul, South Korea

Hanyang Biomedical Research Institute

Seoul, South Korea
SEARCH FILTERS
Time filter
Source Type

Park J.H.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Park Y.S.,Hanyang University | Park Y.S.,Hanyang Biomedical Research Institute | And 2 more authors.
Toxicology Letters | Year: 2016

Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7 days, and a significant decrease was observed at 14 days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3 days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3 days and persisted for up to 14 days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD. © 2016


Park J.H.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Lee J.E.,Hanyang University | Lee J.E.,Hanyang Biomedical Research Institute | And 6 more authors.
Toxicology Letters | Year: 2013

Oxidative stress created by environmental toxicants activates several signaling pathways. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and up-regulated in response to intracellular reactive oxygen species (ROS). Recently, we reported that fipronil (FPN)-induced mitochondria-dependent apoptosis is mediated through ROS in human neuroblastoma SH-SY5Y cells. In this study, we explored the role of autophagy to prevent FPN neurotoxicity. We investigated the modulation of FPN-induced apoptosis according to autophagy regulation. FPN activated caspase-9 and caspase-3, and induced nuclear fragmentation and condensation, all of which indicate that FPN-induced cell death was due to apoptosis. In addition, we observed FPN-induced autophagic cell death by monitoring the expression of LC3-II and Beclin-1. Exposure to FPN in SH-SY5Y cells led to the production of ROS. Treatment with N-acetyl-cysteine (NAC) effectively blocked both apoptosis and autophagy. Interestingly, pretreatment with rapamycin, an autophagy inducer, significantly enhanced the viability of FPN-exposed cells; the enhancement of cell viability was partially due to alleviation of FPN-induced apoptosis via a decrease in levels of cleaved caspase-3. However, pretreatment with 3-methyladenine (3MA) a specific inhibitor for autophagy, remarkably strengthened FPN toxicity and further induced activation of caspase-3 in these cells. Our studies suggest that FPN-induced cytotoxicity is modified by autophagy regulation and that rapamycin is neuroprotective against FPN-induced apoptosis through enhancing autophagy. © 2013.


Park J.H.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Lee J.E.,Hanyang University | Lee J.E.,Hanyang Biomedical Research Institute | And 3 more authors.
Toxicology and Applied Pharmacology | Year: 2013

Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. © 2013 .


Lee J.E.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Jang S.J.,Hanyang Biomedical Research Institute | Koh H.C.,Hanyang University
Toxicology and applied pharmacology | Year: 2014

Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronal cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.


Park J.H.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Ko J.,Hanyang Biomedical Research Institute | Hwang J.,Hanyang University | And 2 more authors.
NeuroToxicology | Year: 2015

Recent studies have demonstrated that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, mediates mitochondria-dependent apoptosis through mitochondrial division. However, little is known about the mechanism by which Drp1 modulates apoptosis in response to chlorpyrifos (CPF)-induced toxicity. In this study, we determined that CPF-induced mitochondrial apoptosis is mediated by Drp1 translocation in SH-SY5Y human neuroblastoma cells. Our results showed that CPF treatment induced intrinsic apoptosis by activating caspase-9, caspase-3, and cytochrome c release in SH-SY5Y cells. Cytosolic Drp1 translocated to the mitochondria in CPF-treated cells and was phosphorylated at Ser616. Treating cells with CPF induced the generation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinases (MAPKs). Inhibiting this ROS generation and MAPK activation abolished CPF-induced expression of phospho-Drp1. Furthermore, Drp1 was required for p53 to translocate to the mitochondria under CPF-induced oxidative stress. Treating cells with mitochondrial-division inhibitor-1 (mdivi-1), which blocks Drp1 translocation, increased the viability of CPF-treated cells by abrogating Drp1 translocation and caspase-3 activation. Specifically, pretreating cells with mdivi-1 inhibited Bax translocation to the mitochondria by blocking p53 signaling. Taken together, these data reveal a novel mechanism by which Drp1 activates mitochondrial-dependent apoptosis and indicate that inhibiting Dpr1 function can protect against CPF-induced cytotoxicity. We propose that inhibiting Drp1 is a possible therapeutic approach for pesticide-induced toxicity when hyperactivated Drp1 contributes to pathology. © 2015.


Lee J.E.,Hanyang University | Lee J.E.,Hanyang Biomedical Research Institute | Park J.H.,Hanyang Biomedical Research Institute | Park J.H.,Hanyang University | And 3 more authors.
Toxicology and Applied Pharmacology | Year: 2012

Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. © 2012.


Park J.H.,Hanyang University | Park J.H.,Hanyang Biomedical Research Institute | Park Y.S.,Hanyang University | Park Y.S.,Hanyang Biomedical Research Institute | And 6 more authors.
Journal of Applied Toxicology | Year: 2016

Oxidative stress and inflammatory responses have been identified as key elements of neuronal cell apoptosis. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in human neuroblastoma SH-SY5Y cells treated with fipronil (FPN). Based on the cytotoxic mechanism of FPN, we examined the neuroprotective effects of meloxicam against FPN-induced neuronal cell death. Treatment of SH-SY5Y cells with FPN induced apoptosis via activation of caspase-9 and -3, leading to nuclear condensation. In addition, FPN induced oxidative stress and increased expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) via inflammatory stimulation. Pretreatment of cells with meloxicam enhanced the viability of FPN-exposed cells through attenuation of oxidative stress and inflammatory response. FPN activated mitogen activated protein kinase (MAPK) and inhibitors of MAPK abolished FPN-induced COX-2 expression. Meloxicam also attenuated FPN-induced cell death by reducing MAPK-mediated pro-inflammatory factors. Furthermore, we observed both nuclear accumulation of p53 and enhanced levels of cytosolic p53 in a concentration-dependent manner after FPN treatment. Pretreatment of cells with meloxicam blocked the translocation of p53 from the cytosol to the nucleus. Together, these data suggest that meloxicam may exert anti-apoptotic effects against FPN-induced cytotoxicity by both attenuating oxidative stress and inhibiting the inflammatory cascade via inactivation of MAPK and p53 signaling. © 2015 John Wiley & Sons, Ltd.


Choi J.-M.,Hanyang University | Choi J.-M.,Hanyang Biomedical Research Institute | Sohn J.-H.,Hanyang University | Sohn J.-H.,Hanyang Biomedical Research Institute | And 5 more authors.
Immunology Letters | Year: 2012

Nuclear factor of activated T cells (NFAT) is an important transcription factor for the production of interleukin (IL)-2 upon T-cell receptor (TcR) signaling. Therefore, inhibition of the NFAT-carcineurin pathway is an important target for inflammatory disease inhibition and graft rejection. A novel cell permeable peptide (CPP), Sim-2, has been identified from a human transcription factor, and Sim-2-CPP conjugated to . β-galactosidase or EGFP protein was efficiently delivered into cells . in vitro and . in vivo. A cell permeable form of the NFAT inhibitory peptide VIVIT (Sim-2-VIVIT) was synthesized and showed inhibitory effects on human CD4 or CD8 T-cell activation through NFAT transcriptional activity suppression and IL-2 inhibition. Intranasal administration of the Sim-2-VIVIT peptide in an ovalbumin (OVA)-induced murine asthma model alleviated peribronchial and perivascular infiltration of inflammatory cells in the lung and caused airway remodeling and airway hyper-responsiveness. These results suggest that cell permeable Sim-2-VIVIT peptide has clinical potential as an immunosuppressive agent for inflammatory diseases. © 2012 Elsevier B.V.


Lee J.E.,Hanyang University | Lee J.E.,Hanyang Biomedical Research Institute | Lim M.S.,Hanyang Biomedical Research Institute | Lim M.S.,Hanyang University | And 6 more authors.
NeuroToxicology | Year: 2014

Chlorpyrifos (CPF) is one of the most widely used organophosphate insecticides with several harmful effects, including neurotoxicity. Although many studies have addressed the neurotoxicity induced by CPF, most data on neurodevelopmental damage was obtained from animal models. We are the first group to use human neural precursor cells (hNPCs) derived from human embryonic stem cells (hESCs) as a developing neuron model to evaluate the mechanisms involved in CPF-induced neurotoxicity. CPF was cytotoxic to these cells in a concentration-dependent manner, as shown by decreased cell viability and increased lactate dehydrogenase release. Furthermore, CPF reduced the expression of AKT and ERK proteins which are involved in intracellular survival pathways. Exposure of hNPCs to CPF led to the production of reactive oxygen species (ROS), and the antioxidant N-acetyl-cystein (NAC) attenuated ROS production induced by CPF. In addition, CPF increased cytochrome c release into the cytosol and activated caspase-9 and -3, indicating that cell death induced by CPF was due to apoptosis in hNPCs. Consistent with these findings, CPF treatment reduced the level of Bcl-2 protein and increased the level of Bax protein. Especially, CPF increased the translocation of BAX into the mitochondria. CPF also induced nuclear accumulation of NF-κB and p53 proteins in a concentration-dependent manner, and their inhibitors attenuated CPF-induced cytotoxicity. In addition, an inhibitor of NF-κB nuclear translocation blocked the increase of p53 in CPF-treated hNPCs. These findings show that CPF induced hNPCs death in part through NF-κB activation via ROS generation, enabling the interaction of p53 with Bcl-2 and Bax and subsequent release of cytochrome c. Collectively, these results represent a unique molecular characterization of CPF-induced cytotoxicity in hNPCs. These data suggest that CPF may affect neurodevelopment in a manner similar to that of several known and suspected neurotoxicants. © 2014.


PubMed | Hanyang Biomedical Research Institute and Hanyang University
Type: | Journal: Neurotoxicology | Year: 2015

Recent studies have demonstrated that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, mediates mitochondria-dependent apoptosis through mitochondrial division. However, little is known about the mechanism by which Drp1 modulates apoptosis in response to chlorpyrifos (CPF)-induced toxicity. In this study, we determined that CPF-induced mitochondrial apoptosis is mediated by Drp1 translocation in SH-SY5Y human neuroblastoma cells. Our results showed that CPF treatment induced intrinsic apoptosis by activating caspase-9, caspase-3, and cytochrome c release in SH-SY5Y cells. Cytosolic Drp1 translocated to the mitochondria in CPF-treated cells and was phosphorylated at Ser616. Treating cells with CPF induced the generation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinases (MAPKs). Inhibiting this ROS generation and MAPK activation abolished CPF-induced expression of phospho-Drp1. Furthermore, Drp1 was required for p53 to translocate to the mitochondria under CPF-induced oxidative stress. Treating cells with mitochondrial-division inhibitor-1 (mdivi-1), which blocks Drp1 translocation, increased the viability of CPF-treated cells by abrogating Drp1 translocation and caspase-3 activation. Specifically, pretreating cells with mdivi-1 inhibited Bax translocation to the mitochondria by blocking p53 signaling. Taken together, these data reveal a novel mechanism by which Drp1 activates mitochondrial-dependent apoptosis and indicate that inhibiting Dpr1 function can protect against CPF-induced cytotoxicity. We propose that inhibiting Drp1 is a possible therapeutic approach for pesticide-induced toxicity when hyperactivated Drp1 contributes to pathology.

Loading Hanyang Biomedical Research Institute collaborators
Loading Hanyang Biomedical Research Institute collaborators