Mountain View, CA, United States
Mountain View, CA, United States

Hansen Medical, headquartered in Mountain View, California, designs and manufactures medical robotics for the accurate positioning and control of catheter-based technologies. The Company manufactures Sensei Robotic Catheter Systems, including next-generation Sensei X Robotic Catheter Systems, and Artisan Control Catheters. In May 2007, the Company obtained regulatory clearances to begin marketing the Sensei system in the United States and the European Union . Wikipedia.


Time filter

Source Type

Patent
Hansen Medical | Date: 2016-11-21

A command interpreter is in communication with a wireless controller. The command interpreter is configured to identify a reference location of the wireless controller, identify a second location of the wireless controller, and determine, based on the reference location and the second location, a sequence of instrument commands configured to adjust positioning of the instrument device.


Patent
Hansen Medical | Date: 2016-11-23

An exemplary drive apparatus may include a roller assembly and a roller support. The roller assembly may have a first continuous surface, a second continuous surface, an open configuration for receiving an elongate member, and a closed configuration for securing the elongate member in the roller assembly. The roller assembly imparts axial motion to the elongate member along the first continuous surface, which maintains contact with the elongate member during the axial motion. The roller support rotates the roller assembly about the second continuous surface, which maintains contact with the roller support during rotational motion. The roller assembly and roller support to impart axial and rotational motion, respectively, independently of one another.


Patent
Hansen Medical | Date: 2016-10-03

The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.


Patent
Hansen Medical | Date: 2016-06-06

A system for conducting denervation of the neural plexus adjacent the renal artery, comprises a pre-shaped ablative element operatively coupled to an elongate deployment member configured to be navigated into the renal artery, the pre-shaped ablative element comprising one or more RF electrodes disposed in an arcuate pattern; and an energy source operatively coupled to the one or more RF electrodes and being configured to cause current to flow from the pre-shaped ablative element and cause localized heating sufficient to denervate nearby neural tissue.


Patent
Hansen Medical | Date: 2016-09-07

Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.


Patent
Hansen Medical | Date: 2016-08-22

An instrument driver comprises opposing rotatable gripping pads. Each of the gripping pads includes an outer circular rim and a center hub. The pads are configured for applying a gripping force to an elongated member. The instrument driver further comprises shafts affixed to the center hubs, and a driver assembly configured for rotating at least one of the shafts, thereby causing the pads to rotate in opposite directions to linearly translate the gripped member. Each of the pads further includes a framework for partially collapsing in response to the gripping force, such that portions of the rims flatten to contact each other. Each rim has a concave gripping surface in order to facilitate vertical centering of the member between the pads. Each of the pads further includes a pair of upper and lower sprockets for interlacing with each other to prevent the elongated member from slipping out between the pads.


An instrument having a flexible and elongated body includes at least a lumen and a flex member disposed within the lumen. The flex member may be capable of providing steering control to a first portion of the elongate body while providing load bearing support to a second portion of the elongate body. A pull wire may be disposed within the flex member, and at least a distal portion of the pull wire may be coupled to the elongate body and a proximal portion of the pull wire may be operatively coupled to a control unit. The control unit may be coupled to a proximal portion of the elongate body.


A system may include a controller configured to determine a user interface status, wherein the user interface status includes user interaction of a user interface. The controller may also be configured to determine a drive mechanism location relative to a first limit and a second limit and select a clutching location based on the user interface status and drive mechanism location.


An instrument having a flexible and elongated body includes at least a lumen and a flex member disposed within the lumen. The flex member may be capable of providing steering control to a first portion of the elongate body while providing load bearing support to a second portion of the elongate body. A pull wire may be disposed within the flex member, and at least a distal portion of the pull wire may be coupled to the elongate body and a proximal portion of the pull wire may be operatively coupled to a control unit. The control unit may be coupled to a proximal portion of the elongate body. In addition, a control member may be operatively coupled to the control unit such that a distal portion of the control member may be positioned near a proximal portion of the flex member. The control member may be configured to support the flex member and control the movement or displacement of the flex member. Furthermore, the flex member may be configured to selectively decouple articulation or steering forces of a first portion of the elongate body away from a second portion of the elongate body; thereby, preventing compression of the second portion of the elongate body while maintaining elasticity or flexibility of the second portion of the elongate body.


Patent
Hansen Medical | Date: 2016-09-20

Various exemplary drive apparatuses and associated methods are disclosed for driving an elongated member, e.g., a guidewire or catheter. An exemplary drive apparatus for driving an elongated member may include a rotational component configured to apply a torque to the elongated member, where the rotational component is positioned a first distance away from an insertion site along the elongated member. The drive apparatus may further include a rotational support configured to apply an assistance torque to the elongated member. The rotational support may be positioned a second distance from the rotational component along the elongated member that is larger than the first distance.

Loading Hansen Medical collaborators
Loading Hansen Medical collaborators