Entity

Time filter

Source Type

Palokka, Finland

Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Dubovsky P.A.,Vihorlat Observatory | Kudzej I.,Vihorlat Observatory | And 89 more authors.
Publications of the Astronomical Society of Japan | Year: 2015

Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae, observed mainly during the 2014-2015 season, and characterized these objects. Our project has greatly improved the statistics of the distribution of orbital periods, which is a good approximation of the distribution of cataclysmic variables at the terminal evolutionary stage, and has confirmed the presence of a period minimum at a period of 0.053 d and a period spike just above this period. The number density monotonically decreased toward the longer period and there was no strong indication of a period gap. We detected possible negative superhumps in Z Cha. It is possible that normal outbursts are also suppressed by the presence of a disk tilt in this system. There was no indication of enhanced orbital humps just preceding the superoutburst, and this result favors the thermal-tidal disk instability as the origin of superoutbursts. We detected superhumps in three AM CVn-type dwarf novae. Our observations and recent other detections suggest that 8% of objects showing dwarf nova-type outbursts are AM CVn-type objects. AM CVn-type objects and EI Psc-type objects may be more abundant than previously recognized. OT J213806, a WZ Sge-type object, exhibited remarkably different features between the 2010 and 2014 superoutbursts. Although the 2014 superoutburst was much fainter, the plateau phase was shorter than the 2010 one, and the course of the rebrightening phase was similar. This object indicates that the O - C diagrams of superhumps can indeed be variable, at least in WZ Sge-type objects. Four deeply eclipsing SU UMa-type dwarf novae (ASASSN-13cx, ASASSN-14ag, ASASSN-15bu, and NSV 4618) were identified. We studied long-term trends in supercycles in MM Hya and CY UMa and found systematic variations of supercycles of ∼20%. © The Author 2015. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Source


Schwope A.D.,Leibniz Institute for Astrophysics Potsdam | Mackebrandt F.,Leibniz Institute for Astrophysics Potsdam | Thinius B.D.,Inastars Observatory | Littlefield C.,University of Notre Dame | And 4 more authors.
Astronomische Nachrichten | Year: 2015

The eclipsing polar CSS081231:071126+440405 turned bright (Vmax ∼ 14.5) in late 2008 and was subsequently observed intensively with small and medium-sized telescopes. A homogeneous analysis of this comprehensive dataset comprising 109 eclipse epochs is presented and a linear ephemeris covering the five years of observations, about 24000 orbital cycles, is derived. Formally this sets rather tight constraints on the mass of a hypothetical circumbinary planet, Mpl ≤ 2 MJup. This preliminary result needs consolidation by long-term monitoring of the source. The eclipse lasts 433.08 ± 0.65 s, and the orbital inclination is found to be i = 79.3°-83.7°. The centre of the bright phase displays accretion-rate dependent azimuthal shifts. No accretion geometry is found that explains all observational constraints, suggesting a complex accretion geometry with possible pole switches and a likely non-dipolar field geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Galan C.,Nicolaus Copernicus University | Mikolajewski M.,Nicolaus Copernicus University | Tomov T.,Nicolaus Copernicus University | Graczyk D.,University of Concepcion | And 95 more authors.
Astronomy and Astrophysics | Year: 2012

Context. EE Cep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EE Cep together with the widely studied ε Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations. Aims. Two observational campaigns were carried out during the eclipses of EE Cep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses. Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession. Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EE Cep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a "bump" that is very clear in all the UBV(RI)C light curves. A temporary increase in the I-band brightness at the orbital phase ∼0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na i lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the Hα emission. Conclusions. These observations confirm that the eclipsing object in EE Cep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EE Cep; (ii) our explanation of the "bump" observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (∼11-12 Porb) and predicted depth of about 2m ̇ for the forthcoming eclipse in 2014. © 2012 ESO. Source


Kato T.,Kyoto University | Ohshima T.,Kyoto University | Denisenko D.,Russian Academy of Sciences | Dubovsky P.A.,Vihorlat Observatory | And 36 more authors.
Publications of the Astronomical Society of Japan | Year: 2014

We report on a superoutburst of the AM CVn-type object SDSSJ090221.35+381941.9 [J0902; orbital period 0.03355(6) d] in 2014 March-April. The entire superoutburst consisted of a precursor outburst and the main superoutburst, followed by a short rebrightening. During the rising phase of the main superoutburst, we detected growing superhumps (stage A superhumps) with a period of 0.03409(1) d. During the plateau phase of the superoutburst, superhumps with a shorter period (stage B superhumps) were observed. Using the orbital period and the period of stage A superhumps, we were able to measure the dynamical precession rate of the accretion disk at the 3:1 resonance, and obtained a mass ratio (q) of 0.041(7). This is the first successful measurement of the mass ratio in an AM CVn-type object accomplished by the recently developed stage A superhump method. The value is generally in agreement with that based on the theoretical evolutionary model. The orbital period of J0902 is the longest among those of the outbursting AM CVn-type objects, and a period on the borderline between the outbursting system and the system with a stable cool disk appears to be longer than one supposed. © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. Source


Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Maehara H.,University of Tokyo | Maehara H.,Kyoto University | And 87 more authors.
Publications of the Astronomical Society of Japan | Year: 2014

Continuing the project described in Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for SU UMa-type dwarf novae mainly observed during the 2012-2013 season. We found three objects (V444 Peg, CSS J203937, and MASTER J212624) having strongly positive period derivatives despite the long orbital period (Porb). By using the period of growing stage (stage A) superhumps, we obtained mass ratios for six objects. We characterized nine new WZ Sge-type dwarf novae. We made a pilot survey of the decline rate in the slowly fading parts of SU UMa-type and WZ Sge-type outbursts. The decline time scale was found to generally follow an expected Porb 1/4 dependence, and WZ Sge-type outbursts also generally follow this trend. There are some objects which show slower decline rates, and we consider these objects good candidates for period bouncers. We also studied unusual behavior in some objects, including BK Lyn which made a transition from an ER UMa-type state to a novalike (standstill) state in 2013, and unusually frequent occurrences of superoutbursts in NY Ser and CR Boo. We applied the least absolute shrinkage and selection operator (Lasso) power spectral analysis, which has been proven to be very effective in analyzing the Kepler data, to the ground-based photometry of BK Lyn, and detected a dramatic disappearance of the signal of negative superhumps in 2013. We suggested that the mass-transfer rates did not strongly vary between the ER UMa-type state and novalike state in BK Lyn, and this transition was less likely caused by a systematic variation of the mass-transfer rate. © 2014 The Author. Source

Discover hidden collaborations