Time filter

Source Type

Wang X.-A.,Institute of Biliary Tract Disease | Wang X.-A.,Laboratory of General Surgery | Wang X.-A.,Shanghai JiaoTong University | Xiang S.-S.,Institute of Biliary Tract Disease | And 51 more authors.
Molecules | Year: 2014

Gallbladder cancer is the most common malignant tumor of the biliary tract, and this condition has a rather dismal prognosis, with an extremely low five-year survival rate. To improve the outcome of unresectable and recurrent gallbladder cancer, it is necessary to develop new effective treatments and drugs. The purpose of the present study was to evaluate the effects of cordycepin on human gallbladder cells and uncover the molecular mechanisms responsible for these effects. The Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that cordycepin affected the viability and proliferation of human gallbladder cancer cells in a dose- and time-dependent manner. Flow cytometric analysis showed that cordycepin induced S phase arrest in human gallbladder cancer cell lines(NOZ and GBC-SD cells). Cordycepin-induced apoptosis was observed using an Annexin V/propidium iodide (PI) double-staining assay, and the mitochondrial membrane potential (ΔΨm) decreased in a dose-dependent manner. Additionally, western blot analysis revealed the upregulation of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP and Bax and the downregulation of Bcl-2, cyclin A and Cdk-2 in cordycepin-treated cells. Moreover, cordycepin inhibited tumor growth in nude mice bearing NOZ tumors. Our results indicate that this drug may represent an effective treatment for gallbladder carcinoma. © 2014 by the authors.

Wang X.-H.,Zhejiang Cancer Hospital | Yu X.-M.,Zhejiang Cancer Hospital | Jiang H.,Hangzhou Peoples First Hospital | Luo C.,Zhejiang Cancer Hospital
Molecular Medicine Reports | Year: 2015

Colorectal cancer (CRC) is one of the most common types of cancer worldwide. The majority of mortalities caused by colorectal cancer are due to metastatic disease. As numerous CRC patients experience metastasis to the liver or lung and fail to respond to curative therapies, intensive research efforts have sought to identify the molecular changes or regulatory mechanisms underlying CRC metastasis. In the present study, a stable CRC cell line, HCT16, overexpressing firefly lucif-erase was constructed and an in vivo metastasis model was established via intravenous injection of this cell line. Using an imaging system, tumor tissue located in the lung and colon was separated and cells were prepared. The microRNA (miRNA) expression profiles of these lung homing or colon homing cells were assessed and compared. A total of 38 differentially expressed miRNAs were selected and confirmed our previous results; several of these have been reported to be involved in the regulation of cancer progression. However, the remaining miRNAs require further investigation. The present profiling may be the first step toward delineating the differential expression of miRNAs in the CRC cells located in the colon and the lung, enabling the elucidation of the regulation associated with miRNAs in colorectal lung metastases. These miRNAs require further validation and functional analysis to evaluate whether they are important in the pathogenesis of colorectal lung metastases or are adopted as markers to predict colorectal metastasis.

Discover hidden collaborations