Houston, TX, United States
Houston, TX, United States

Halliburton Company is an American multinational corporation, and one of the world's largest oil field services companies with operations in more than 80 countries. It owns hundreds of subsidiaries, affiliates, branches, brands, and divisions worldwide and employs approximately 100,000 people.The company has dual headquarters located in Houston and in Dubai, where Chairman and CEO David Lesar works and resides, "to focus company’s Eastern Hemisphere Growth." The company remains incorporated in the United States.Halliburton's major business segment is the Energy Services Group . ESG provides technical products and services for petroleum and natural gas exploration and production. Halliburton's former subsidiary, KBR, is a major construction company of refineries, oil fields, pipelines, and chemical plants. Halliburton announced on April 5, 2007 that it had sold the division and severed its corporate relationship with KBR, which had been its contracting, engineering and construction unit as a part of the company.The company has been involved in numerous controversies, including the Deepwater Horizon explosion, for which it agreed to settle outstanding legal claims against it by paying litigants $1.1 billion.As of August 1, 2014 Jeff Miller was promoted to President of Halliburton reporting directly to Dave Lesar.On November 17, 2014 Halliburton and Baker Hughes jointly announced a definitive agreement under which Halliburton will, subject to the conditions set forth in the agreement, acquire Baker Hughes in a stock and cash transaction valued at $34.6 billion. A press release made available on the former's website, as at December 11, 2014 detailed the restructuring in the integration to follow. Wikipedia.


Time filter

Source Type

Geophysical prospecting may be achieved using borehole seismic data and processing velocity seismic profiles using downward continuation to simulate the seismic source being at the depth of the borehole receivers. Such methods may involve collecting seismic data for a subterranean formation with at least one borehole receiver; grouping the seismic data into a one common receiver gather corresponding to each borehole receiver; performing a downward continuation on at least one of the common receiver gathers to produce corresponding downward continued common receiver gathers; performing a normal moveout analysis on at least one of the downward continued common receiver gathers to produce corresponding semblance velocity spectra; and analyzing at least one of the semblance velocity spectra for a zone of interest in the subterranean formation.


Patent
Halliburton Co. | Date: 2013-03-12

A system and method for monitoring oil flow rates at multiple points in production wells using a flow sensing fiber optic cable. An illustrative system embodiment includes: a fiber optic sensing system housed within a tube suitable for a downhole environment; and a flow to signal conversion device attached to the tube and deployed in the oil flow.


Patent
Halliburton Co. | Date: 2013-02-01

A method and device for relieving thermal stresses on the optical fibers in fiber optic splice housings used in hostile thermal environments.


Disclosed are systems and methods for monitoring drilling fluids. One system includes a flow path containing a fluid having at least one component present therein, and a movable housing having at least one optical computing device configured to move with the movable housing along a detection path, the at least one optical computing device including at least one integrated computational element (ICE) configured to optically interact with the fluid over the detection path, wherein the at least one ICE is configured to detect a characteristic of the at least one component and generate an output signal corresponding to the characteristic.


Patent
Halliburton Co. | Date: 2013-03-29

A method of swelling an oil-swellable elastomer in a well comprising the step of: contacting the oil-swellable elastomer in the well with a treatment fluid, wherein the treatment fluid comprises: (A) an oil selected from the group consisting of alkanes and naphtha, wherein the oil comprises hydrocarbons having anywhere in the range of 5 to 21 carbons; (B) an -olefin having anywhere in the range of 18 to 26 carbons; and (C) an activator for oil-swelling, the activator selected from the group consisting of: ketones, dodecane, terpenes, terpenoids, haloalkanes having from 9 to 20 carbons, and any combination thereof. An oil-swelled elastomer as produced by the method is also contemplated.


Patent
Halliburton Co. | Date: 2014-09-24

A system for electromagnetic wellbore surface ranging to determine the location of a second wellbore relative to a first wellbore utilizing i) a current source configured to directly inject electrical current into a conductive member disposed in each wellbore and ii) an electromagnetic senor positioned on the surface of a formation, the sensor configured to measure electromagnetic fields at the formation surface emanating from the conductive member within each wellbore.


Systems and methods for extracting and analyzing formation fluids from solids circulated out of a subterranean formation are provided. In one embodiment, the methods comprise: providing a sample of formation solids that have been separated from a fluid circulated in at least a portion of a well bore penetrating a portion of a subterranean formation at a well site; performing a solvent extraction on the sample of formation solids using one or more solvents at an elevated pressure at the well site, wherein at least a portion of one or more formation fluids residing in the formation solids is extracted into the one or more solvents to produce an extracted fluid; and analyzing the extracted fluid at the well site to determine the composition of the extracted fluid.


Systems and methods for optical fluid identification approximation and calibration are described herein. One example method includes populating a database with a calculated pseudo optical sensor (CPOS) response of a first optical tool to a first sample fluid. The CPOS response of the first optical tool may be based on a transmittance spectrum of a sample fluid and may comprise a complex calculation using selected components of the first optical tool. A first model may be generated based, at least in part, on the database. The first model may receive as an input an optical sensor response and output a predicted fluid property. A second model may also be generated based, at least in part, on the database. The second model may receive as an input at least one known/measured fluid/environmental property value and may output a predicted pseudo optical sensor response of the first optical tool.


An object-focused workflow system for processing a received object in accordance with a declarative workflow specification. The specification includes modules and attributes, where module execution results in the evaluation of attributes, and may include the initiation of a side-effect action performed by an external component. Whether modules are to be executed for a particular received object is determined by associated enabling conditions. Attributes may be evaluated in accordance with computation rules and a combining policy, where the computation rules specify how values are to be contributed to an attribute, and the combining policy indicates how those contributed values are combined in order to assign a value to the attribute. Tasks in the workflow system may be executed eagerly in order to improve the performance of the workflow system. The eager evaluation of tasks includes the determination of whether such tasks are eligible for eager evaluation, and whether the tasks are unneeded or necessary for the processing of the received event. Workflows which satisfy described design properties allow for improved algorithms for the determination of the whether tasks are eligible, eager, and/or necessary. A graphical user interface is provided for displaying a representation of the evaluation status of the modules and attributes during workflow execution.


Patent
Halliburton Co. | Date: 2013-12-18

A gravel pack tool for interfacing with a gravel pack completion assembly includes a mandrel disposed to fit into a gravel pack completion assembly, the mandrel carrying a sensing mechanism disposed to detect a unique sensing feature positioned at known location within the gravel pack completion assembly. The downhole tool further includes a locating mechanism carried by the mandrel, the locating mechanism disposed to mechanically engage a locating feature within the gravel pack assembly in order to locate the tool relative thereto. The tool includes processing system to activate the locating mechanism in response to detection of a sensing feature by the sensing mechanism.

Loading Halliburton Co. collaborators
Loading Halliburton Co. collaborators