Time filter

Source Type

Zhang W.,Guangxi University | Zhang W.,Hainan Institute of Tropical Agricultural Resources HITAR | Crickmore N.,University of Sussex | George Z.,University of Sussex | And 8 more authors.
Journal of Invertebrate Pathology | Year: 2012

The mosquito is a very important vector involved in the worldwide transmission of disease-causing viruses and parasites. Controlling the mosquito population remains one of the best means for preventing the serious infectious diseases of malaria, yellow fever, dengue, filariasis and so on and there has been an increasing interest in developing biopesticides as a useful substitute to chemical insecticides. As a result, Bacillus thuringiensis subsp. israelensis (Bti) has been extensively used due to its specificity and high toxicity to a variety of mosquito larvae. However it is prudent to seek alternatives to Bti with alternative spectra of mosquitocidal activity or that are able to overcome any resistance that might develop against Bti. The Bt S2160-1 strain was isolated from soil samples collected from Southern China and found to have a comparable mosquitocidal activity to Bti. However there were significant differences in terms of their plasmid profiles, crystal proteins produced and cry gene complement. A PCR-restriction fragment length polymorphism identification system was developed and used in order to identify novel cry-type genes and four such genes (cry30Ea, cry30Ga, cry50Ba and cry54Ba) were identified in Bt S2160-1. In conclusion, Bt S2160-1 has been identified as a potential alternative to Bti, which could be used for the control of mosquito populations in order to reduce the incidence of mosquito-borne diseases. © 2011 Elsevier Inc.

Zhang W.,Hainan Normal University | Zhang J.,Hainan Normal University | Crickmore N.,University of Sussex | Wu Z.,Hainan Normal University | And 5 more authors.
World Journal of Microbiology and Biotechnology | Year: 2014

The Bacillus thuringiensis strain S2160-1 has previously been identified as being highly toxic to mosquito larvae and a viable alternative to strains currently used commercially to control these insects. A PCR approach had identified the presence of four putative insecticidal toxin genes (cry30Ea, cry30 Ga, cry50Ba and cry54Ba) in this strain, but did not identify the genes that encoding three of the main crystal toxin proteins of size 140 and 130 and 30 kDa. In this study we used mass spectrometry to identify the 130 kDa toxin as a rare Cry4 toxin (Cry4Cb3). The gene encoding this toxin was cloned and expressed and the toxin shown to have mosquitocidal activity against Culex quinquefasciatus. © 2014, Springer Science+Business Media Dordrecht.

Loading Hainan Institute of Tropical Agricultural Resources HITAR collaborators
Loading Hainan Institute of Tropical Agricultural Resources HITAR collaborators