Time filter

Source Type

Shortt J.,Peter MacCallum Cancer Center | Shortt J.,Monash Medical Center | Shortt J.,Monash University | Hsu A.K.,Haematology Immunology Translational Research Laboratory | And 2 more authors.
Oncogene | Year: 2013

Thalidomide and its analogues (lenalidomide and pomalidomide) are small molecule glutamic acid derivatives of the immunomodulatory drug (IMiD) class. In addition to the immuno-adjuvant and anti-inflammatory properties that define an IMiD, the thalidomide analogues demonstrate an overlapping and diverse range of biological activities, including anti-angiogenic, teratogenic and epigenetic effects. Importantly, the IMiDs possess anti-cancer activity with selectivity for molecularly defined subgroups of hematological malignancies, specifically mature B-cell neoplasms and myelodysplasia with deletion of chromosome 5q. Emerging insight into the pathophysiological drivers of these IMiD-responsive disease states can now be synthesized using previously disclosed IMiD activities and recently discovered thalidomide targets to build unifying models of IMiD mechanism of action. Attention to mechanisms of IMiD-induced clinical toxicities, in particular the recently identified association of lenalidomide with second primary malignancies, provides an additional tool for determination of drug mechanism. This review seeks to define the molecular IMiD targets and biological outputs that underpin their anti-neoplastic activity. It is anticipated that elucidation of important IMiD targets will allow the rational development of new-generation therapeutics with the potential to separate thalidomide-analogue efficacy from clinical toxicity. © 2013 Macmillan Publishers Limited All rights reserved. Source

Harrison S.J.,Peter MacCallum Cancer Center | Harrison S.J.,University of Melbourne | Harrison S.J.,Haematology Immunology Translational Research Laboratory | Quach H.,University of Melbourne | And 19 more authors.
Blood | Year: 2011

We report results from a study exploring the combination of romidepsin, bortezomib, and dexamethasone for the treatment of patients with multiple myeloma (MM) previously treated with > 1 prior therapy. The primary objective was to determine the maximum tolerated dose (MTD) of the combination using a novel accelerated dose-escalation schedule in patients with relapsed or refractory MM. The secondary objective was to determine overall response (OR), time to progression (TTP), and overall survival (OS). The MTD identified was bortezomib 1.3 mg/m2 (days 1, 4, 8, and 11), dexamethasone 20 mg (days 1, 2, 4, 5, 8, 9, 11, and 12), and romidepsin 10 mg/m2 (days 1, 8, and 15) every 28 days. Thrombocytopenia (64%) was the most common ≥ grade 3 hematologic toxicity. Peripheral neuropathy occurred in 76% of patients (n = 19) (≥ grade 3, 8%; 95% confidence interval [CI] 1%-26%). Maintenance romidepsin 10 mg/m2 (on days 1 and 8 of a 28-day cycle) proved feasible, with 12 patients receiving a median of 7.5 cycles (range: 1-29). An OR (M-protein) of > minor response (MR) was seen in 18 of 25 patients (72%); 2 (8%) had complete remissions (CRs) and 13 (52%) had partial responses (PRs), including 7 (28%) with very good PRs (VGPRs). The median TTP was 7.2 (95% CI: 5.5-19.6) months, and the median OS was > 36 months. This regimen shows activity with manageable toxicity and warrants further evaluation. This trial was registered at www.clinicaltrials.gov as NCT00431990. © 2011 by The American Society of Hematology. Source

Quach H.,Peter MacCallum Cancer Center | Quach H.,University of Melbourne | Quach H.,Haematology Immunology Translational Research Laboratory | Ritchie D.,Peter MacCallum Cancer Center | And 9 more authors.
Leukemia | Year: 2010

Immunomodulatory drugs (IMiDs) are thalidomide analogues, which possess pleiotropic anti-myeloma properties including immune-modulation, anti-angiogenic, anti-inflammatory and anti-proliferative effects. Their development was facilitated by an improved understanding in myeloma (MM) biology and initiated a profound shift in the therapeutic approach towards MM. Despite the diverse effects of IMiDs in vitro, the relative contribution of each effect towards their ultimate anti-MM activity is still unclear. Based on in vitro data, it appears that anti-proliferative effects and downregulation of crucial cytokines are their most important anti-MM attributes. Although the co-stimulatory effects on T and NK cells have been heralded as a unique and important property of IMiDs towards enhancing anti-MM immune activity, these in vitro effects have yet to be firmly corroborated in vivo. Much is yet to be elucidated regarding the complex interplay of immunomodulatory cytokines that occurs in vivo, which ultimately dictates the net effects of IMiDs in MMthe understanding of which is necessary to facilitate optimal manipulation of these drugs in future MM management. © 2010 Macmillan Publishers Limited All rights reserved. Source

Discover hidden collaborations