Entity

Time filter

Source Type

Cambridge, United Kingdom

Grimwade L.,Haemato Oncology Diagnostics Service | Gudgin E.,University of Cambridge | Bloxham D.,Haemato Oncology Diagnostics Service | Bottley G.,United Technologies | And 5 more authors.
Cytometry Part A | Year: 2012

Mutations within the nucleophosmin NPM1 gene occur in approximately one-third of cases of acute myeloid leukemia (AML). These mutations result in cytoplasmic accumulation of the mutant NPM protein. NPM1 mutations are currently detected by molecular methods. Using samples from 37 AML patients, we investigated whether imaging flow cytometry could be a viable alternative to this current technique. Bone marrow/peripheral blood cells were stained with anti-NPM antibody and DRAQ5 nuclear stain, and data were acquired on an ImageStream imaging flow cytometer (Amnis Corp., Seattle, USA). Using the similarity feature for data analysis, we demonstrated that this technique could successfully identify cases of AML with a NPM1 mutation based on cytoplasmic NPM protein staining (at similarity threshold of 1.1 sensitivity 88% and specificity 90%). Combining data of mean fluorescence intensity and % dissimilar staining in a 0-2 scoring system further improved the sensitivity (100%). Imaging flow cytometry has the potential to be included as part of a standard flow cytometry antibody panel to identify potential NPM1 mutations as part of diagnosis and minimal residual disease monitoring. Imaging flow cytometry is an exciting technology that has many possible applications in the diagnosis of hematological malignancies, including the potential to integrate modalities. © 2012 International Society for Advancement of Cytometry. Source


Grimwade L.,Haemato Oncology Diagnostics Service | Gudgin E.,University of Cambridge | Bloxham D.,Haemato Oncology Diagnostics Service | Scott M.A.,Haemato Oncology Diagnostics Service | Erber W.N.,Haemato Oncology Diagnostics Service
Journal of Clinical Pathology | Year: 2011

Acute promyelocytic leukaemia (APML) can be promptly diagnosed by detecting abnormal diffuse staining patterns of PML bodies in abnormal promyelocytes using immunofluorescence microscopy. However, this technique is subjective, with low sensitivity. Using samples from 18 patients with acute myeloid leukaemia (AML) (including four with APML), the authors investigated whether imaging flow cytometry could be a viable alternative to this current technique and improve sensitivity levels. Bone marrow/peripheral blood cells were stained with an antibody to PML, and data were acquired on an ImageStream (Amnis Corporation, Seattle, Washington, USA). Using the modulation feature for data analysis, the authors demonstrated that this technique could successfully identify cases of APML. Imaging flow cytometry, by analysing greater numbers of cells and with the potential to include disease-specific antigens, increases the sensitivity of the current immunofluorescence technique. Imaging flow cytometry is an exciting technology that has many possible applications in the diagnosis of haematological malignancies, including the potential to integrate modalities. Source

Discover hidden collaborations