Québec, Canada
Québec, Canada

Time filter

Source Type

Wattam A.R.,Virginia Polytechnic Institute and State University | Davis J.J.,University of Chicago | Davis J.J.,Argonne National Laboratory | Assaf R.,University of Chicago | And 33 more authors.
Nucleic Acids Research | Year: 2017

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by 'virtual integration' to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Viana M.V.C.,Federal University of Minas Gerais | Wattam A.R.,Virginia Polytechnic Institute and State University | Batra D.G.,Centers for Disease Control and Prevention | Boisvert S.,Gydle Inc. | And 8 more authors.
Genome Announcements | Year: 2017

Brucella canis is a facultative intracellular pathogen that preferentially infects members of the Canidae family. Here, we report the genome sequencing of two Brucella canis strains isolated from humans and one isolated from a dog host. © 2017 Viana et al.


Stival Sena J.,Laval University | Giguere I.,Laval University | Boyle B.,Laval University | Rigault P.,Gydle Inc. | And 9 more authors.
BMC Plant Biology | Year: 2014

Background: A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described.Results: Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons.Conclusion: Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles. © 2014 Stival Sena et al.; licensee BioMed Central Ltd.


Pavy N.,Laval University | Pelgas B.,Laval University | Pelgas B.,Natural Resources Canada | Laroche J.,Laval University | And 5 more authors.
BMC Biology | Year: 2012

Background: Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling.Results: To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago.Conclusions: Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. © 2012 Pavy et al; licensee BioMed Central Ltd.


Pavy N.,Laval University | Gagnon F.,Laval University | Rigault P.,Gydle Inc. | Blais S.,Laval University | And 21 more authors.
Molecular Ecology Resources | Year: 2013

High-density SNP genotyping arrays can be designed for any species given sufficient sequence information of high quality. Two high-density SNP arrays relying on the Infinium iSelect technology (Illumina) were designed for use in the conifer white spruce (Picea glauca). One array contained 7338 segregating SNPs representative of 2814 genes of various molecular functional classes for main uses in genetic association and population genetics studies. The other one contained 9559 segregating SNPs representative of 9543 genes for main uses in population genetics, linkage mapping of the genome and genomic prediction. The SNPs assayed were discovered from various sources of gene resequencing data. SNPs predicted from high-quality sequences derived from genomic DNA reached a genotyping success rate of 64.7%. Nonsingleton in silico SNPs (i.e. a sequence polymorphism present in at least two reads) predicted from expressed sequenced tags obtained with the Roche 454 technology and Illumina GAII analyser resulted in a similar genotyping success rate of 71.6% when the deepest alignment was used and the most favourable SNP probe per gene was selected. A variable proportion of these SNPs was shared by other nordic and subtropical spruce species from North America and Europe. The number of shared SNPs was inversely proportional to phylogenetic divergence and standing genetic variation in the recipient species, but positively related to allele frequency in P. glauca natural populations. These validated SNP resources should open up new avenues for population genetics and comparative genetic mapping at a genomic scale in spruce species. © 2013 Blackwell Publishing Ltd.


Rigault P.,Gydle Inc | Boyle B.,Laval University | Lepage P.,McGill University | Cooke J.E.K.,University of Alberta | And 2 more authors.
Plant Physiology | Year: 2011

Several angiosperm plant genomes, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), poplar (Populus trichocarpa), and grapevine (Vitis vinifera), have been sequenced, but the lack of reference genomes in gymnosperm phyla reduces our understanding of plant evolution and restricts the potential impacts of genomics research. A gene catalog was developed for the conifer tree Picea glauca (white spruce) through large-scale expressed sequence tag sequencing and full-length cDNA sequencing to facilitate genome characterizations, comparative genomics, and gene mapping. The resource incorporates new and publicly available sequences into 27,720 cDNA clusters, 23,589 of which are represented by full-length insert cDNAs. Expressed sequence tags, mate-pair cDNA clone analysis, and custom sequencing were integrated through an iterative process to improve the accuracy of clustering outcomes. The entire catalog spans 30 Mb of unique transcribed sequence. We estimated that the P. glauca nuclear genome contains up to 32,520 transcribed genes owing to incomplete, partially sequenced, and unsampled transcripts and that its transcriptome could span up to 47 Mb. These estimates are in the same range as the Arabidopsis and rice transcriptomes. Next-generation methods confirmed and enhanced the catalog by providing deeper coverage for rare transcripts, by extending many incomplete clusters, and by augmenting the overall transcriptome coverage to 38 Mb of unique sequence. Genomic sample sequencing at 8.5% of the 19.8-Gb P. glauca genome identified 1,495 clusters representing highly repeated sequences among the cDNA clusters. With a conifer transcriptome in full view, functional and protein domain annotations clearly highlighted the divergences between conifers and angiosperms, likely reflecting their respective evolutionary paths. © 2011 American Society of Plant Biologists. All Rights Reserved.


Robert C.,Laval University | Nieminen J.,Laval University | Dufort I.,Laval University | Gagne D.,Laval University | And 10 more authors.
Molecular Reproduction and Development | Year: 2011

While most assisted reproductive technologies (ART) are considered routine for the reproduction of species of economical importance, such as the bovine, the impact of these manipulations on the developing embryo remains largely unknown. In an effort to obtain a comprehensive survey of the bovine embryo transcriptome and how it is modified by ART, resources were combined to design an embryo-specific microarray. Close to one million high-quality reads were produced from subtracted bovine embryo libraries using Roche 454 Titanium deep sequencing technology, which enabled the creation of an augmented bovine genome catalog. This catalog was enriched with bovine embryo transcripts, and included newly discovered indel type and 3'UTR variants. Using this augmented bovine genome catalog, the EmbryoGENE Bovine Microarray was designed and is composed of a total of 42,242 probes, including 21,139 known reference genes; 9,322 probes for novel transcribed regions (NTRs); 3,677 alternatively spliced exons; 3,353 3'-tiling probes; and 3,723 controls. A suite of bioinformatics tools was also developed to facilitate microrarray data analysis and database creation; it includes a quality control module, a Laboratory Information Management System (LIMS) and microarray analysis software. Results obtained during this study have already led to the identification of differentially expressed blastocyst targets, NTRs, splice variants of the indel type, and 3'UTR variants. We were able to confirm microarray results by real-time PCR, indicating that the EmbryoGENE bovine microarray has the power to detect physiologically relevant changes in gene expression. © 2011 Wiley-Liss, Inc.

Loading Gydle Inc collaborators
Loading Gydle Inc collaborators