Time filter

Source Type

Québec, Canada

Rigault P.,Gydle Inc | Boyle B.,Laval University | Lepage P.,McGill University | Cooke J.E.K.,University of Alberta | And 2 more authors.
Plant Physiology | Year: 2011

Several angiosperm plant genomes, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), poplar (Populus trichocarpa), and grapevine (Vitis vinifera), have been sequenced, but the lack of reference genomes in gymnosperm phyla reduces our understanding of plant evolution and restricts the potential impacts of genomics research. A gene catalog was developed for the conifer tree Picea glauca (white spruce) through large-scale expressed sequence tag sequencing and full-length cDNA sequencing to facilitate genome characterizations, comparative genomics, and gene mapping. The resource incorporates new and publicly available sequences into 27,720 cDNA clusters, 23,589 of which are represented by full-length insert cDNAs. Expressed sequence tags, mate-pair cDNA clone analysis, and custom sequencing were integrated through an iterative process to improve the accuracy of clustering outcomes. The entire catalog spans 30 Mb of unique transcribed sequence. We estimated that the P. glauca nuclear genome contains up to 32,520 transcribed genes owing to incomplete, partially sequenced, and unsampled transcripts and that its transcriptome could span up to 47 Mb. These estimates are in the same range as the Arabidopsis and rice transcriptomes. Next-generation methods confirmed and enhanced the catalog by providing deeper coverage for rare transcripts, by extending many incomplete clusters, and by augmenting the overall transcriptome coverage to 38 Mb of unique sequence. Genomic sample sequencing at 8.5% of the 19.8-Gb P. glauca genome identified 1,495 clusters representing highly repeated sequences among the cDNA clusters. With a conifer transcriptome in full view, functional and protein domain annotations clearly highlighted the divergences between conifers and angiosperms, likely reflecting their respective evolutionary paths. © 2011 American Society of Plant Biologists. All Rights Reserved. Source

Pavy N.,Laval University | Gagnon F.,Laval University | Rigault P.,Gydle Inc | Blais S.,Laval University | And 21 more authors.
Molecular Ecology Resources | Year: 2013

High-density SNP genotyping arrays can be designed for any species given sufficient sequence information of high quality. Two high-density SNP arrays relying on the Infinium iSelect technology (Illumina) were designed for use in the conifer white spruce (Picea glauca). One array contained 7338 segregating SNPs representative of 2814 genes of various molecular functional classes for main uses in genetic association and population genetics studies. The other one contained 9559 segregating SNPs representative of 9543 genes for main uses in population genetics, linkage mapping of the genome and genomic prediction. The SNPs assayed were discovered from various sources of gene resequencing data. SNPs predicted from high-quality sequences derived from genomic DNA reached a genotyping success rate of 64.7%. Nonsingleton in silico SNPs (i.e. a sequence polymorphism present in at least two reads) predicted from expressed sequenced tags obtained with the Roche 454 technology and Illumina GAII analyser resulted in a similar genotyping success rate of 71.6% when the deepest alignment was used and the most favourable SNP probe per gene was selected. A variable proportion of these SNPs was shared by other nordic and subtropical spruce species from North America and Europe. The number of shared SNPs was inversely proportional to phylogenetic divergence and standing genetic variation in the recipient species, but positively related to allele frequency in P. glauca natural populations. These validated SNP resources should open up new avenues for population genetics and comparative genetic mapping at a genomic scale in spruce species. © 2013 Blackwell Publishing Ltd. Source

Tsoi S.,University of Alberta | Zhou C.,University of Alberta | Grant J.R.,University of Alberta | Pasternak J.A.,University of Alberta | And 7 more authors.
BMC Genomics | Year: 2012

Background: The domestic pig is an important livestock species and there is strong interest in the factors that affect the development of viable embryos and offspring in this species. A limited understanding of the molecular mechanisms involved in early embryonic development has inhibited our ability to fully elucidate these factors. Next generation deep sequencing and microarray technologies are powerful tools for delineation of molecular pathways involved in the developing embryo.Results: Here we present the development of a porcine-embryo-specific microarray platform created from a large expressed sequence tag (EST) analysis generated by Roche/454 next-generation sequencing of cDNAs constructed from critical stages of in vivo or in vitro porcine preimplantation embryos. Two cDNA libraries constructed from in vitro and in vivo produced preimplantation porcine embryos were normalized and sequenced using 454 Titanium pyrosequencing technology. Over one million high-quality EST sequences were obtained and used to develop the EMbryogene Porcine Version 1 (EMPV1) microarray composed of 43,795 probes. Based on an initial probe sequence annotation, the EMPV1 features 17,409 protein-coding, 473 pseudogenes, 46 retrotransposed, 2,359 non-coding RNA, 4,121 splice variants in 2,862 genes and a total of 12,324 Novel Transcript Regions (NTR). After re-annotation, the total unique genes increased from 11,961 to 16,281 and 1.9% of them belonged to a large olfactory receptor (OR) gene family. Quality control on the EMPV1 was performed and revealed an even distribution of ten clusters of spiked-in control spots and array to array (dye-swap) correlation was 0.97.Conclusions: Using next-generation deep sequencing we have produced a large EST dataset to allow for the selection of probe sequences for the development of the EMPV1 microarray platform. The quality of this embryo-specific array was confirmed with a high-level of reproducibility using current Agilent microarray technology. With more than an estimated 20,000 unique genes represented on the EMPV1, this platform will provide the foundation for future research into the in vivo and in vitro factors that affect the viability of porcine embryos, as well as the effects of these factors on the live offspring that result from these embryos. © 2012 Tsoi et al.; licensee BioMed Central Ltd. Source

Raherison E.,Laval University | Rigault P.,Gydle Inc | Caron S.,Laval University | Poulin P.-L.,Laval University | And 6 more authors.
BMC Genomics | Year: 2012

Background: Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues.Results: An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs.Conclusion: Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees. © 2012 Raherison et al.; licensee BioMed Central Ltd. Source

Robert C.,Laval University | Nieminen J.,Laval University | Dufort I.,Laval University | Gagne D.,Laval University | And 10 more authors.
Molecular Reproduction and Development | Year: 2011

While most assisted reproductive technologies (ART) are considered routine for the reproduction of species of economical importance, such as the bovine, the impact of these manipulations on the developing embryo remains largely unknown. In an effort to obtain a comprehensive survey of the bovine embryo transcriptome and how it is modified by ART, resources were combined to design an embryo-specific microarray. Close to one million high-quality reads were produced from subtracted bovine embryo libraries using Roche 454 Titanium deep sequencing technology, which enabled the creation of an augmented bovine genome catalog. This catalog was enriched with bovine embryo transcripts, and included newly discovered indel type and 3'UTR variants. Using this augmented bovine genome catalog, the EmbryoGENE Bovine Microarray was designed and is composed of a total of 42,242 probes, including 21,139 known reference genes; 9,322 probes for novel transcribed regions (NTRs); 3,677 alternatively spliced exons; 3,353 3'-tiling probes; and 3,723 controls. A suite of bioinformatics tools was also developed to facilitate microrarray data analysis and database creation; it includes a quality control module, a Laboratory Information Management System (LIMS) and microarray analysis software. Results obtained during this study have already led to the identification of differentially expressed blastocyst targets, NTRs, splice variants of the indel type, and 3'UTR variants. We were able to confirm microarray results by real-time PCR, indicating that the EmbryoGENE bovine microarray has the power to detect physiologically relevant changes in gene expression. © 2011 Wiley-Liss, Inc. Source

Discover hidden collaborations