Gwangju Institute of Science and Technology

www.gist.ac.kr/
Gwangju, South Korea

GIST , formerly known as the Kwangju Institute of Science and Technology , is a leading research-oriented institute of Korea located in Gwangju, South Korea. Students in GIST can attend classes in the institute and participate in research. Wikipedia.


Time filter

Source Type

Patent
Gwangju Institute of Science and Technology | Date: 2017-05-10

The present invention relates to a composition for inducing cell reprogramming. The indazole derivative compound contained in the composition of the present invention shows an improved biological profile and at the same time can perform efficient cell reprogramming. In addition, unlike conventional compounds (e.g. riversine or BIO) for inducing low-molecular cell reprogramming, the indazole derivative compound of the present invention does not show cytotoxicity and thus is expected to have high growth in the market of cell therapy products when clinically applied. Conventional indazole derivative compounds have never known as a use for cell reprogramming. Compared with conventional indazole derivative compounds, the compound of the present invention has a great cell reprogramming ability while having no or little cytotoxicity.


Patent
Gwangju Institute of Science and Technology | Date: 2016-11-11

An apparatus and method for measuring an erythrocyte sedimentation rate based on a change in conductivity of blood over time. The apparatus for measuring an erythrocyte sedimentation rate may include: a chamber for holding blood; a pair of electrodes being partially or completely brought into contact with the blood; and a conductivity meter measuring the conductivity through the pair of electrodes. The apparatus and method according to the present invention are less time-consuming than the Westergren method and can acquire a variety of information (for example, hematocrit, dynamics of the sedimentation rate and aggregation of erythrocytes, a relationship between the sedimentation rate and aggregation of erythrocytes, and the like).


Patent
Gwangju Institute of Science and Technology | Date: 2016-11-18

Disclosed herein is a method of enhancing speech. The method includes calculating a far-end speech spectrum by performing fast Fourier transformation of a signal received by a far-end user, calculating a background noise spectrum collected by a microphone provided to a mobile device of a near-end user; calculating a gain from the far-end speech spectrum and the background noise spectrum using a speech intelligibility index-based module, and deriving an enhanced far-end speech spectrum by applying the gain to the far-end speech spectrum, wherein, in calculating a gain using a speech intelligibility index-based module, a power budget used for transmitting and receiving a speech signal is set to vary with the background noise spectrum.


Patent
Gwangju Institute of Science and Technology | Date: 2016-10-28

Disclosed herein are a method of manufacturing multiple microelectrodes on a syringe needle and a syringe needle manufactured by the same. The syringe needle includes multiple interdigitated electrodes (IDEs) placed on a surface of a portion of the syringe needle spaced apart from a tip of the syringe needle, a pair of interconnection lines for electrical connection of the multiple IDEs, the interconnection lines electrically connecting a first group of the IDEs on the left and a second group of the IDEs on the right through one end of each of the interconnection lines, and a conductor for electrical connection to a PCB provided to a main body of a syringe at the other end of each of the interconnection lines, wherein the multiple IDEs are basically formed of a material for a dielectric layer and are alternately arranged at a first distance from one another.


Patent
Gwangju Institute of Science and Technology | Date: 2016-11-23

Disclosed are a composite membrane and a method of manufacturing the same. More particularly, disclosed are a composite membrane, which includes a porous support and an active layer deposited on a surface of the porous support, and a method of manufacturing the composite membrane using concentration polarization of a network-nanoparticle-dispersed organic sol-containing solution on a surface of the porous support.


Patent
Gwangju Institute of Science and Technology | Date: 2017-02-16

The present disclosure provides a method and apparatus for measuring hematocrit of blood. The method includes measuring resistance data of a target blood sample; calculating a hematocrit estimation parameter for measuring hematocrit of the target blood sample using the resistance data; and determining a hematocrit estimation value using the hematocrit estimation parameter. The method and apparatus for measuring hematocrit (HCT) provides convenience in measurement of hematocrit using electrical modeling.


Patent
Gwangju Institute of Science and Technology | Date: 2016-10-07

The present disclosure relates a method for transfer printing of an electronic device comprising: forming a sacrificial layer on a handling substrate; forming a protective layer on the sacrificial layer; forming a polymer substrate on the protective layer; forming a pattern on the polymer substrate, and forming a ciliary adhesive rod on the sides of the polymer substrate; forming a supportive layer on the polymer substrate on which the adhesive rod is formed; and removing the sacrificial layer and the protective layer, and transfer printing the electronic device onto an object to-be-printed, while dissolving the to supportive layer.


Patent
Gwangju Institute of Science and Technology | Date: 2017-01-06

Provided is a metamaterial-based polarization converter in which a reception antenna and a transmission antenna are formed by using a metamaterial, to thus emit an incident non-polarized or polarized electromagnetic wave in an angle-converted polarization direction. The metamaterial-based electromagnetic wave polarization converter includes: a reception antenna made of a metamaterial and allowing incident electromagnetic waves to resonate at a surface of the reception antenna to generate a surface current; a transmission antenna at a rear side of the reception antenna, and made of an angle-converted metamaterial to thus allow the electromagnetic waves transferred from the reception antenna to resonate to then be emitted in a polarization direction; and a connector made of a conductive material that connects the reception antenna and the transmission antenna, to thereby transfer a surface current generated from the reception antenna to the transmission antenna.


Patent
Gwangju Institute of Science and Technology | Date: 2017-02-03

Disclosed is a graphene transistor using graphene as a channel region and a logic device using the same. A doping metal layer is provided over a graphene channel of the graphene transistor. The doping metal layer has a work function higher or lower than that of the graphene. When the doping metal layer has a work function lower than that of the graphene, the graphene, which is below the doping metal layer, is doped with an n-type. Also, when the doping metal layer has a work function higher than that of the graphene, the graphene, which is below the doping metal layer, is doped with a p-type. As described above, various aspects of junction may be implemented in the graphene channel, and three states may be obtained from a single transistor.


Patent
Gwangju Institute of Science and Technology | Date: 2017-01-27

Disclosed herein is an aptamer sensor including a substrate having metal nanoparticles formed thereon, an aptamer attached to surfaces of the metal nanoparticles to form a structure by selectively reacting with a target material to be detected, and an intercalating agent inserted between the aptamer and the target material in reaction of the aptamer with the target material to increase shift of an absorption spectrum due to local surface plasmon resonance sensor through aggregation toward the metal nanoparticles

Loading Gwangju Institute of Science and Technology collaborators
Loading Gwangju Institute of Science and Technology collaborators