Time filter

Source Type

Kroemer G.,French Institute of Health and Medical Research | Kroemer G.,University of Paris Descartes | Kroemer G.,University Pierre and Marie Curie | Kroemer G.,Gustave Roussy Comprehensive Cancer Institute | And 4 more authors.

Results from recent clinical trials demonstrate that a combinatorial immunotherapeutic regimen based on 2 distinct checkpoint blockers, namely, the CTLA4-targeting agent ipilimumab and the PD-1-specific molecule nivolumab, causes objective responses in a majority of subjects with advanced melanoma. These findings revolutionize the treatment of a neoplasm that was considered incurable until recently. Nonetheless, announcing the defeat of melanoma appears premature. Indeed, a sizeable fraction of patients does not respond to ipilimumab plus nivolumab, and the long-term efficacy of this immunotherapeutic regimen has not yet been investigated. Moreover, many patients experience severe side effects, calling for the development of strategies that uncouple the efficacy of ipilimumab plus nivolumab from their toxicity. © 2015 Taylor & Francis Group, LLC. Source

Gentili M.,French Institute of Health and Medical Research | Kowal J.,French Institute of Health and Medical Research | Tkach M.,French Institute of Health and Medical Research | Satoh T.,French Institute of Health and Medical Research | And 11 more authors.

Infected cells detect viruses through a variety of receptors that initiate cell-intrinsic innate defense responses. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a cytosolic sensor for many DNA viruses and HIV-1. In response to cytosolic viral DNA, cGAS synthesizes the second messenger 2'3'-cyclic GMP-AMP (cGAMP), which activates antiviral signaling pathways. We show that in cells producing virus, cGAS-synthesized cGAMP can be packaged in viral particles and extracellular vesicles. Viral particles efficiently delivered cGAMP to target cells. cGAMP transfer by viral particles to dendritic cells activated innate immunity and antiviral defenses. Finally, we show that cell-free murine cytomegalovirus and Modified Vaccinia Ankara virus contained cGAMP. Thus, transfer of cGAMP by viruses may represent a defense mechanism to propagate immune responses to uninfected target cells. Source

Galluzzi L.,French Institute of Health and Medical Research | Galluzzi L.,University of Paris Descartes | Galluzzi L.,University Pierre and Marie Curie | Galluzzi L.,Gustave Roussy Comprehensive Cancer Institute | And 11 more authors.

Some forms of regulated cell death, such as apoptosis, are precipitated by the activation of cysteine proteases of the caspase family, including caspase 8, 9, and 3. Other caspases, such as caspase 1 and 4, are well known for their pro-inflammatory functions but regulate cell death in a limited number of pathophysiological settings. Accumulating evidence suggests that the most conserved function of mammalian caspases is not to control cell death sensu stricto, but to regulate inflammatory and immune reactions to dying cells and infectious challenges. Here, we review the molecular and cellular mechanisms though which mammalian caspases connect cell-death signaling to the maintenance of organismal homeostasis. © 2016 Elsevier Inc. Source

Sica V.,French Institute of Health and Medical Research | Sica V.,Gustave Roussy Comprehensive Cancer Institute | Sica V.,University Paris - Sud | Galluzzi L.,French Institute of Health and Medical Research | And 20 more authors.
Molecular Cell

Autophagy constitutes a prominent mechanism through which eukaryotic cells preserve homeostasis in baseline conditions and in response to perturbations of the intracellular or extracellular microenvironment. Autophagic responses can be relatively non-selective or target a specific subcellular compartment. At least in part, this depends on the balance between the availability of autophagic substrates ("offer") and the cellular need of autophagic products or functions for adaptation ("demand"). Irrespective of cargo specificity, adaptive autophagy relies on a panel of sensors that detect potentially dangerous cues and convert them into signals that are ultimately relayed to the autophagic machinery. Here, we summarize the molecular systems through which specific subcellular compartments-including the nucleus, mitochondria, plasma membrane, reticular apparatus, and cytosol-convert homeostatic perturbations into an increased offer of autophagic substrates or an accrued cellular demand for autophagic products or functions. © 2015 Elsevier Inc. Source

Kroemer G.,French Institute of Health and Medical Research | Kroemer G.,University of Paris Descartes | Kroemer G.,University Pierre and Marie Curie | Kroemer G.,Gustave Roussy Comprehensive Cancer Institute | And 10 more authors.

The first study demonstrating that human colorectal carcinoma (CRC) is under robust immunosurveillance was published a decade ago. Today, it is clear that CRC patients with Stage III lesions abundantly infiltrated by effector memory T cells have a better prognosis than subjects with Stage I neoplasms exhibiting no or poor immune infiltration. Thus, immunological parameters have a superior prognostic value for CRC patients than TNM staging or the Dukes classification. In spite of the fact that CRC is the first neoplasia found to be under immunological control, most attempts made so far to cure this malignancy with immunotherapy have failed. With the exception of a minority of lesions characterized by microsatellite instability (MSI), CRC seems to be insensitive to the blockade of immunological checkpoints with monoclonal antibodies (mAbs) specific for cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) and the PD-1 ligand CD274 (best known as PD-L1). Thus, CRC stands in contrast with an increasing number of malignancies that respond to checkpoint blockers. Efforts should therefore be dedicated to the development of strategies to (re)instate immunosurveillance in patients with MSI- CRC, perhaps based on the identification of novel, locally relevant immunological checkpoints. © 2015 Taylor & Francis Group, LLC. Source

Discover hidden collaborations