Savannah, GA, United States
Savannah, GA, United States

Gulfstream Aerospace Corporation is an American wholly owned subsidiary of General Dynamics.Gulfstream designs, develops, manufactures, markets, and services business-jet aircraft. Gulfstream has produced more than 2,000 aircraft since 1958. Gulfstream's range consists of the G150, G280, G350, G450, G500, G550, G600 and G650. Wikipedia.


Time filter

Source Type

Patent
Gulfstream Aerospace | Date: 2016-06-21

A load assembly for use with an aircraft includes a support sub-assembly and a lifting sub-assembly. The support sub-assembly is configured for removable coupling to a structural member of the aircraft. The structural member has a first interior position and a second interior position. The support sub-assembly extends between the first interior position and the second interior position. The lifting sub-assembly is movably coupled to the support sub-assembly. The lifting sub-assembly is movable along the support sub-assembly between the first interior position and the second interior position and configured to lift or lower a load, and to support the load as the lifting sub-assembly moves along the support sub-assembly between the first interior position and the second interior position.


Trailing edge components of aircraft structures, aircraft structures comprising such trialing edge components, and methods of manufacturing such trailing edge components are provided. In an exemplary embodiment, a trailing edge component includes a first skin comprising a first plurality of plies of carbon fiber reinforced polymer material and having a first mating region. The first plurality of plies includes a first ply with a first drop-off edge in the first mating region. A second skin includes a second plurality of plies of carbon fiber reinforced polymer material and having a second mating region affixed to the first mating region.


Methods for manufacturing a reinforced composite structure for an aircraft and devices used in such methods are provided. A device includes a base, a first support member fixedly attached to the base, and a second support member fixedly attached to the base and aligned longitudinally with the first support member. The first support member and the second support member are spaced a first distance apart. Two pinching wheels are spaced a second distance apart. The two pinching wheels are positioned proximate to ends of the first support member and the second support member. The second distance is less than the first distance. The two pinching wheels are configured to receive a composite material layout between them and to cause two lengths of the composite material layout to contact each other.


An integrated power distribution, data network, and control architecture for a vehicle is provided that includes nodes distributed throughout the vehicle. Each node includes power distribution (PD) and data collection and distribution (DCD) components. The PD components receive electrical power from a source external to the node and distribute and control the electrical power supplied to active and passive electrical loads that are external to the node. The PD components include an electrical power input interface configured to receive an electrical power input from a source external to the node, and one or more power control modules. Each power control module can control the electrical power supplied to one or more electrical power output interfaces that supply power to the active and passive electrical loads. The DCD components receive data from data sources external to the node and transmit data to data consumers external to the node.


An integrated power distribution, data network, and control architecture for a vehicle is provided that includes nodes distributed throughout the vehicle. Each node includes power distribution (PD) and data collection and distribution (DCD) components. The PD components receive electrical power from a source external to the node and distribute and control the electrical power supplied to active and passive electrical loads that are external to the node. The PD components include an electrical power input interface configured to receive an electrical power input from a source external to the node, and one or more power control modules. Each power control module can control the electrical power supplied to one or more electrical power output interfaces that supply power to the active and passive electrical loads. The DCD components receive data from data sources external to the node and transmit data to data consumers external to the node.


Patent
Gulfstream Aerospace | Date: 2017-04-26

Thermal-acoustic section (436) for an aircraft (10) for reducing noise along an acoustic path (22) produced from an acoustic source (16) is provided herein. The thermal-acoustic section (436) comprises a plurality of juxtaposed porous layers (400) forming a thermal-acoustic stack (447) that has a first outermost portion (474), a second outermost portion (476) and a central portion (478). The thermal-acoustic stack has a gradually deecreasing characteristic acoustic impedance from the first outermost portion to the central portion and a gradually increasing characteristic acoustic impedance from the central portion to the second outermost portion, to promote transmission loss of the transmitted portion of the noise through the thermal-acoustic stack.


Patent
Gulfstream Aerospace | Date: 2015-11-23

Air vehicles, fly-by wire systems, and method for preemptive mitigation of turbulence are provided. An air vehicle includes a flight control surface, a sensor, and a controller. The sensor is configured to determine a velocity of an air mass that is separated from the air vehicle by a predetermined distance. The controller is communicatively coupled with the sensor and is configured to determine whether the air mass will disturb smooth flight of the air vehicle. The controller is further configured to manipulate the flight control surface in response to determining that the air mass will disturb smooth flight of the air vehicle.


A system for facilitating instrument cross-checks between aircrew members using wearable displays includes, but is not limited to, first and second wearable displays configured to be worn by a first and second aircrew members, respectively, and first and second sensors configured to detect first and second orientations of the wearable displays, and a processor coupled with the first sensor, the second sensor, the first wearable display and the second wearable display. The processor is configured to obtain the first and second orientations from the first and second sensors, respectively, and to control the first wearable display to display a first image to the first crew member, and to control the second wearable display to display a second image to the second crew member, and to control the first wearable display to display the second image to the first crew member when the first orientation comprises a first predetermined orientation.


Patent
Gulfstream Aerospace | Date: 2016-03-30

A web component suitable for use with a snap-fit assembly is disclosed herein. The web component includes, but is not limited to, a sheet metal member that has a periphery and a first side and a second side. The sheet metal member also includes a plurality of protrusions that extend from a first surface of the first side and from a second surface of the second side. The plurality of protrusions are disposed proximate a portion of the periphery and are configured to engage a female receiver associated with the snap-fit assembly.


Patent
Gulfstream Aerospace | Date: 2016-05-25

A supersonic inlet includes a relaxed isentropic compression surface to improve net propulsive force by shaping the compression surface of the inlet to defocus the resulting shocklets away from the cowl lip. Relaxed isentropic compression shaping of the inlet compression surface functions to reduce the cowl lip surface angle, thereby improving inlet drag characteristics and interference drag characteristics. Supersonic inlets in accordance with the invention also demonstrate reductions in peak sonic boom overpressure while maintaining overall engine performance.

Loading Gulfstream Aerospace collaborators
Loading Gulfstream Aerospace collaborators