Time filter

Source Type

Gulf Shores, AL, United States

Parveen S.,University of Maryland Eastern Shore | DaSilva L.,University of Maryland Eastern Shore | DePaola A.,Gulf Coast Seafood Laboratory | Bowers J.,College Park | And 5 more authors.
International Journal of Food Microbiology

Information is limited about the growth and survival of naturally-occurring Vibrio parahaemolyticus in live oysters under commercially relevant storage conditions harvested from different regions and in different oyster species. This study produced a predictive model for the growth of naturally-occurring V. parahaemolyticus in live Eastern oysters (Crassostrea virginica) harvested from the Chesapeake Bay, MD, USA and stored at 5-30°C until oysters gapped. The model was validated with model-independent data collected from Eastern oysters harvested from the Chesapeake Bay and Mobile Bay, AL, USA and Asian (C. ariakensis) oysters from the Chesapeake Bay, VA, USA. The effect of harvest season, region and water condition on growth rate (GR) was also tested. At each time interval, two samples consisting of six oysters each were analyzed by a direct-plating method for total V. parahaemolyticus. The Baranyi D-model was fitted to the total V. parahaemolyticus growth and survival data. A secondary model was produced using the square root model. V. parahaemolyticus slowly inactivated at 5 and 10°C with average rates of -. 0.002 and -. 0.001. log. cfu/h, respectively. The average GRs at 15, 20, 25, and 30°C were 0.038, 0.082, 0.228, and 0.219. log. cfu/h, respectively. The bias and accuracy factors of the secondary model for model-independent data were 1.36 and 1.46 for Eastern oysters from Mobile Bay and the Chesapeake Bay, respectively. V. parahaemolyticus GRs were markedly lower in Asian oysters. Harvest temperature, salinity, region and season had no effect on GRs. The observed GRs were less than those predicted by the U.S. Food and Drug Administration's V. parahaemolyticus quantitative risk assessment. © 2012 Elsevier B.V. Source

Bjornsdottir-Butler K.,Gulf Coast Seafood Laboratory | McCarthy S.A.,Gulf Coast Seafood Laboratory | Dunlap P.V.,University of Michigan | Benner R.A.,Gulf Coast Seafood Laboratory
Applied and Environmental Microbiology

Scombrotoxin fish poisoning (SFP) remains the main contributor of fish poisoning incidents in the United States, despite efforts to control its spread. Psychrotrophic histamine-producing bacteria (HPB) indigenous to scombrotoxin-forming fish may contribute to the incidence of SFP.We examined the gills, skin, and anal vents of yellowfin (n = 3), skipjack (n = 1), and albacore (n = 6) tuna for the presence of indigenous HPB. Thirteen HPB strains were isolated from the anal vent samples from albacore (n = 3) and yellowfin (n = 2) tuna. Four of these isolates were identified as Photobacterium kishitanii and nine isolates as Photobacterium angustum; these isolates produced 560 to 603 and 1,582 to 2,338 ppm histamine in marine broth containing 1% histidine (25°C for 48 h), respectively. The optimum growth temperatures and salt concentrations were 26 to 27°C and 1% salt for P. kishitanii and 30 to 32°C and 2% salt for P. angustum in Luria 70% seawater (LSW-70). The optimum activity of the HDC enzyme was at 15 to 30°C for both species. At 5°C, P. kishitanii and P. angustum had growth rates of 0.1 and 0.2 h-1, respectively, and the activities of histidine decarboxylase (HDC) enzymes were 71% and 63%, respectively. These results show that indigenous HPB in tuna are capable of growing at elevated and refrigeration temperatures. These findings demonstrate the need to examine the relationships between the rate of histamine production at refrigeration temperatures, seafood shelf life, and regulatory limits. © 2016, American Society for Microbiology. All Rights Reserved. Source

Jones J.L.,Gulf Coast Seafood Laboratory | Ludeke C.H.M.,Gulf Coast Seafood Laboratory | Ludeke C.H.M.,University of Hamburg | Bowers J.C.,Center for Food Safety and Applied Nutrition | And 3 more authors.
Applied and Environmental Microbiology

Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)-real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh+ and/or trh+) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n=30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and -0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities. © 2014, American Society for Microbiology. Source

Jones J.L.,Gulf Coast Seafood Laboratory | Ludeke C.H.M.,Gulf Coast Seafood Laboratory | Ludeke C.H.M.,University of Hamburg | Bowers J.C.,Center for Food Safety and Applied Nutrition | DePaola A.,Gulf Coast Seafood Laboratory
International Journal of Food Microbiology

Vibrio vulnificus is the leading cause of seafood associated mortality in the United States and is generally associated with consumption of raw oysters. Two genetic markers have emerged as indicators of strain virulence, 16S rDNA type B (rrnB) and virulence correlated gene type C (vcgC). While much is known about the distribution of V. vulnificus in oysters, a limited number of studies have addressed the more virulent subtypes. Therefore, the goals of this study were to (1) determine the suitability of media for recovery of total and virulent genotypes of V. vulnificus and (2) evaluate the geographical and seasonal distribution of these genotypes. Market oysters from across the United States and the strains isolated from them during a year-long study in 2007 were used. For media evaluation, VVA and CPC. + were compared using direct plating of oyster tissues while mCPC and CPC. + were compared for isolation following MPN enrichment. Representative isolates from each media/method were tested for rrn and vcg types to determine their seasonal and geographical distribution. No statistically significant difference was observed between VVA/CPC. + or mCPC/CPC. + for isolation of total or virulent (rrnB/. vcgC) genotypes of V. vulnificus. Overall, 32% of recovered isolates possessed the virulent genotype. The prevalence of these genotypes was highest in oysters from the Gulf Coast during Oct-Dec, and demonstrated a statistically significant geographical and seasonal pattern. This is the first report on the distribution of virulent V. vulnificus genotypes across the United States, which provides novel insight into the occurrence of this pathogen. © 2013. Source

DaSilva L.,Food Science and Technology Ph.D. Program | Parveen S.,Food Science and Technology Ph.D. Program | DePaola A.,Gulf Coast Seafood Laboratory | Bowers J.,College Park | Tamplin M.L.,University of Tasmania
Applied and Environmental Microbiology

Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of -0.0045 and -0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B f) and accuracy (A f) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B f and A f were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters. © 2012, American Society for Microbiology. Source

Discover hidden collaborations