Gulf Coast Research and Education Center

Wimauma, FL, United States

Gulf Coast Research and Education Center

Wimauma, FL, United States
Time filter
Source Type

Denoyes B.,French National Institute for Agricultural Research | Amaya I.,Instituto Andaluz Of Investigacion Y Formacion Agraria Y Pesquera Ifapa | Liston A.,Oregon State University | Tennessen J.,Oregon State University | And 9 more authors.
Acta Horticulturae | Year: 2017

In the last few years, high-throughput genomics promised to bridge the gap between plant physiology and plant sciences. In addition, high-throughput genotyping technologies facilitate marker-based selection for better performing genotypes. In strawberry, Fragaria vesca was the first reference sequence obtained in the Rosoideae sub-family. This genome has a high level of synteny with genomes of other species of diploid and polyploid Fragaria, but it also provides a reference for species like Rubus and Rosa for functional genomics. Many tools for genetic, genomic and functional analyses were introduced over the last 10 years and these tools are still evolving. For genotyping, many studies have used simple sequence repeats (SSRs) but whole genome sequencing is now a mature technology and facilitates the development of genotyping chips and other genetic approaches such as genome wide association studies (GWAS). Furthermore, microarray-based technologies have been eclipsed by RNA-seq, the high-throughput sequencing of RNA. These new approaches have led to advances in our understanding of the genetically complex octoploid species, and have revolutionized functional genomics. For all genetic and genomic studies, novel material such as complex crosses such as NILs and EMS have appeared in addition to the classical segregating population. With all these tools, strawberry now emerges as a plant model, not only for studying fruit quality but also for deciphering the mechanisms controlling various aspects of plant biology. Selective examples will be described to illustrate the latest research on strawberry and what is coming from other model species.

Kumar V.,Tropical Research and Education Center | Seal D.R.,Tropical Research and Education Center | Schuster D.J.,Gulf Coast Research and Education Center | McKenzie C.,Us Horticultural Research Laboratory | And 3 more authors.
Florida Entomologist | Year: 2011

The chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an emerging pest of many economically important vegetable and ornamental crops grown in the United States. Accurate identification of this pest is a fundamental requirement in development of effective quarantine and management strategies. Using scanning electron microscopy, high resolution images of important taxonomic traits of this pest were produced, which will aid research, regulatory and extension personnel to identify this pest. High resolution images were obtained for identifying characters of S. dorsalis including tergites with antecostal ridges; head with 3 pairs of ocellar setae, metanotum presenting longitudinal striations with medially located pair of setae; veins of forewing presenting widely spaced setae; segment VIII with complete posteromarginal comb of microtrichia; and sternites lacking discal setae but covered with rows of microtrichia except in the antero-medial region. Further, a preliminary comparison of morphological traits of S. dorsalis populations from different geographical regions was conducted, which can help in understanding the phenotype of this pest. Specimens of S. dorsalis were obtained from 5 distinct geographical regions: New Delhi, India; Shizouka, Japan; Negev, Israel; St. Vincent and Florida in the United States. Fourteen morphological characters of each population of S. dorsalis were measured and compared among the 5 populations. No significant differences were observed between the body lengths of the various S. dorsalis populations, which ranged from 0.85 mm (Negev) to 0.98 mm (Florida). When comparing 12 morphological characters, we found no significant differences among New Delhi, St. Vincent, Negev and Florida populations. However, when S. dorsalis populations of these 4 regions were compared with Shizouka, significant differences were detected for either 2 or 5 morphological characters depending on the population, suggesting the Japan population is more robust i.e., longer and wider mesothorax and metathorax, and wider abdomens. Also, the mean lengths of body size among different populations did not vary directly or inversely with latitude.

Kebede M.,Haramaya University | Timilsina S.,University of Florida | Ayalew A.,Haramaya University | Admassu B.,International Institute Of Tropical Agriculture | And 8 more authors.
European Journal of Plant Pathology | Year: 2014

Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis (MLSA), we identified a diverse group of Xanthomonas strains isolated from central Ethiopia. None of the strains were sensitive to copper or streptomycin. Multilocus sequence analysis was used to compare Ethiopian strains with representative Xanthomonas strains from a worldwide collection based on DNA sequences of six housekeeping genes (lacF, lepA, gyrB, fusA, gltA and gapA) and hrpB genes. Phylogenetic analysis of the concatenated sequences showed that X. gardneri, X. vesicatoria and X. perforans were associated with BST in Ethiopia, whereas Xanthomonas euvesicatoria was absent from the Ethiopian sample. There was no genetic diversity among the isolated strains belonging to X. gardneri and X. perforans. However, two X. vesicatoria haplotypes were identified indicating at least two different sources of introduction of X. vesicatoria to Ethiopia. All of the X. perforans strains were only pathogenic on tomato and were T3 strains with the exception of one identified as tomato race 4 (T4). The X. gardneri and X. vesicatoria strains were tomato race 2 (T2), but were variable in pepper race determinations indicating variation in effectors among strains. © 2014, Koninklijke Nederlandse Planteziektenkundige Vereniging.

Simonne E.,University of Florida | Hutchinson C.,University of Florida | DeValerio J.,Bradford County | Hochmuth R.,North Florida Research and Education Center | And 9 more authors.
HortTechnology | Year: 2010

The success of the best management practices (BMPs) program for vegetables in Florida is measured by the level of BMP implementation and the improvement of water quality. Both require keeping water and fertilizer in the root zone of vegetables. The University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Extension Vegetable Group has identified the fundamental principles of 1) basing UF/IFAS production recommendations on the rigors of science and the reality of field production; 2) replacing the out-of-date paradigm "pollute less by reducing nutrient application rates" with "improve water management and adjust fertilizer programs accordingly"; 3) engaging growers, consultants, educators, and regulators in open-channel discussions; and 4) regularly updating current fertilization and irrigation recommendations for vegetables grown in Florida to reflect current varieties used by the industry. The group identified 1) developing ultralow-flow drip irrigation; 2) assisting conversion from seepage to drip irrigation; 3) using recycled water; 4) developing controlled-release fertilizers for vegetables; 5) developing real-time management tools for continuous monitoring of soil water and chemical parameters; 6) developing yield mapping tools for vegetable crops; 7) developing and testing drainage lysimeter designs suitable for in-field load assessment; and 8) using grafting and breeding to develop commercially acceptable varieties with improved nutrient use efficiency by improving morphological, biochemical, and chemical traits as new strategies to keep nutrients in the root zone. These strategies should become funding priorities for state agencies to help the vegetable industry successfully transition into the BMP era.

Wilson S.B.,University of Florida | Wilson S.B.,Indian River Research and Education Center | Knox G.W.,University of Florida | Knox G.W.,North Florida Research and Education Center | And 6 more authors.
HortScience | Year: 2014

A wild-type selection of heavenly bamboo (Nandina domestica) and eight cultivars were evaluated in northern and southern Florida for 144 weeks. Onset of flowering generally began by April andMay in southern Florida and 4 to 8 weeks later in northern Florida. Fruit was first noted 4 to 8 weeks after most cultivars began flowering. Landscape performance and fruit production varied widely among taxa and location. 'AKA', 'Firehouse', 'Firepower', and 'Firestorm' heavenly bamboo did not flower or fruit in either location. Greater plant growth, survival, and fruiting were observed in northern Florida than in southern Florida. In both locations, the wild-type form of heavenly bamboo produced more fruit than 'Alba', 'Gulf Stream', 'Monfar', and 'Moyer's Red'. Seed viability was fairly consistent among fruiting cultivars, ranging from 69% to 89%. Nuclear DNA content and ploidy analysis indicated that all nine nandina cultivarswere diploids, suggesting that tetraploidy is not the genetic cause of the non-fruiting trait in 'AKA', 'Firehouse', 'Firepower', and 'Firestorm'. Results of this study offer insight into future non-invasive heavenly bamboo breeding efforts and emphasize the importance of cultivar and geographic distinctions when regarding the invasive status of a species.

Tamang B.,University of Florida | Andreu M.G.,Gulf Coast Research and Education Center | Rockwood D.L.,University of Florida
Agroforestry Systems | Year: 2010

Florida citrus and vegetable crops generate billions of dollars in revenue every year. However, wind, freezing temperatures, hurricanes, and diseases negatively impact production. Windbreaks located perpendicular to the prevailing wind can increase farm production simply by reducing wind and modifying microclimate. Windbreaks can also help in managing pathogens such as citrus canker (Xanthomonas campestris pv. citri). To study the modification of wind speed, temperature, and relative humidity on the leeside of single-row tree windbreaks in southern Florida, automated weather stations were installed in 2007/2008 at 2 m above the ground along transects perpendicular to a eastern redcedar (Juniperus virginiana) and three cadaghi (Corymbia torelliana) (WB1-WB3) windbreaks. All windbreaks reduced wind speed, with minimum wind speed (~5% of the open wind speed) at two times the distance of windbreak height (2H, where H = windbreak height in m) on the leeside of a E. redcedar (~17% porosity) and at 4H (~3-30% of the open wind speed) and 6H (<50% of the open wind speed) on the leeside of cadaghi windbreaks WB1 (~22% porosity) and WB2 (~36% porosity), respectively, when the wind direction was nearly perpendicular to the windbreaks. Wind speed reduction was observed up to 31 times the windbreak height (31H). Cadaghi windbreaks reduced wind speed on the leeside even during a tropical storm event. Temperatures on the leeside of the windbreaks were warmer during the day and cooler near the windbreaks at night compared to temperature in the open fields. This study demonstrates that single-row tree windbreaks can reduce wind and modify the microclimate to enhance crop production for Florida growers. © 2010 Springer Science+Business Media B.V.

Shrestha D.,University of Florida | McAuslane H.J.,University of Florida | Adkins S.T.,U.S. Department of Agriculture | Smith H.A.,Gulf Coast Research and Education Center | And 2 more authors.
Environmental Entomology | Year: 2016

Since 2003, growers of Florida watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] have periodically suffered large losses from a disease caused by Squash vein yellowing virus (SqVYV), which is transmitted by the whitefly Middle East-Asia Minor 1 (MEAM1), formerly Bemisia tabaci (Gennadius) biotype B. Common cucurbit weeds like balsam apple (Momordica charantia L.) and smellmelon [Cucumis melo var. dudaim (L.) Naud.] are natural hosts of SqVYV, and creeping cucumber (Melothria pendula L.) is an experimental host. Study objectives were to compare these weeds and -Mickylee' watermelon as sources of inoculum for SqVYV via MEAM1 transmission, to determine weed susceptibility to SqVYV, and to evaluate whitefly settling and oviposition behaviors on infected vs. mock-inoculated (inoculated with buffer only) creeping cucumber leaves. We found that the lowest percentage of watermelon recipient plants was infected when balsam apple was used as a source of inoculum. Watermelon was more susceptible to infection than balsam apple or smellmelon. However, all weed species were equally susceptible to SqVYV when inoculated by whitefly. For the first 5 h after release, whiteflies had no preference to settle on infected vs. mock-inoculated creeping cucumber leaves. After 24 h, whiteflies preferred to settle on mock-inoculated leaves, and more eggs were laid on mock-inoculated creeping cucumber leaves than on SqVYV-infected leaves. The transmission experiments (source of inoculum and susceptibility) show these weed species as potential inoculum sources of the virus. The changing settling preference of whiteflies from infected to mock-inoculated plants could lead to rapid spread of virus in the agroecosystem. © Published by Oxford University Press on behalf of Entomological Society of America 2016.

Chambers A.,University of Florida | Whitaker V.M.,University of Florida | Whitaker V.M.,Gulf Coast Research and Education Center | Gibbs B.,University of Florida | And 2 more authors.
Plant Breeding | Year: 2012

Many volatile compounds have been shown to influence the flavour of strawberry (Fragaria spp.) fruit. A published study demonstrated that linalool, a critical flavour compound, is produced in cultivated F.×ananassa varieties owing to a truncated form of the NEROLIDOL SYNTHASE (NES) enzyme. The corresponding allele (FaNES1) features a 5′-deletion that is detectable by PCR. Herein, we tested a broad set of strawberry genotypes to understand the origin of the allele and to identify materials that may be preferred candidates for molecular breeding. The results indicate that the FaNES1 allele (linalool+) is not present in any diploid, tetraploid or hexaploid accession tested. It is present in 112 F.×ananassa cultivars examined. The FaNES1 allele is present in all but three of 46 wild F. virginiana and F. chiloensis genotypes. Two of these three lines continue to produce linalool despite the absence of the allele. This survey suggests that the FaNES1 allele possibly arose following octoploidization and that linalool possibly is an important factor in strawberry biology, aside from its role in anthrocentric fruit quality attributes. © 2012 Blackwell Verlag GmbH.

Loading Gulf Coast Research and Education Center collaborators
Loading Gulf Coast Research and Education Center collaborators