Entity

Time filter

Source Type


Chen S.Y.,Guiyang Medical College | Chen S.Y.,Affliated Hospital of Guiyang Medical College | Chen S.Y.,Guizhou Province Laboratory of Hematological Disease Diagnostic and Treat Center | Wang J.S.,Affliated Hospital of Guiyang Medical College | And 14 more authors.
Chinese Medical Journal | Year: 2014

Background Bone marrow hematopoietic function suppression is one of the most common side effects of chemotherapy. After chemotherapy, the bone marrow structure gets destroyed and the cells died, which might cause the hematopoietic function suppression. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism that associates with cell proliferation and resistance to apoptosis. The aim of this study was to restore or resist the bone marrow from the damage of chemotherapy by the HO-1 expression of mouse mesenchymal stem cells (mMSCs) homing to the mice which had the chemotherapy-induced bone marrow suppression. Methods One hundred and sixty female Balb/c mice (6-8-weeks old) were randomly divided into four groups. Each group was performed in 40 mice. The control group was intraperitoneally injected for 5 days and tail intravenously injected on the 6th day with normal saline. The chemotherapy-induced bone marrow suppression was established by intraperitoneally injecting cyclophosphamide (CTX) into the mice which performed as the chemotherapy group. The mMSCs were tail intravenously injected into 40 chemotherapically damaged mice which served as the mMSCs group. The difference between the HO-1 group and the mMSCs group was the injected cells. The HO-1 group was tail intravenously injected into the mMSCs that highly expressed HO-1 which was stimulated by hemin. The expression of HO-1 was analyzed by Western blotting and RT-PCR. Cell proliferation was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Histopathologic examinations were performed 1 week after injection. Results Compared with the control group, the expression levels of HO-1 mRNA and protein were signifcantly higher in the HO-1 group (all P <0.05), even obviously than the mMSCs group. CTX treatment induced apoptosis and inhibited proliferation. After injected, the white blood cell (WBC), red blood cell (RBC) and platelet (PLT) declined fast and down to the bottom at the 7th day. The bone marrow structure was destroyed incomplete. In vitro, the survival rate of cells in chemotherapy group was less than 50% after 24 hours. In contrast, mMSCs could do a favor to the cellular cleavage and proliferation. They slowed down the cell mortality and more than 50% cells survived after 24 hours. The effects of blocking apoptosis and bone marrow recovery could be more effective in the HO-1 group. In the HO-1 group, it had observed that the bone marrow structure became complete and the hemogram closed to normal at 7th day. Conclusions HO-1 played an important role in promoting the recovery of CTX-induced hematopoietic damage. We suggest that HO-1 is able to restore the functions of chemotherapy-induced hematopoietic damage. Source


Wang J.,Guizhou Province Laboratory of Hematological Disease Diagnostic and Treat Center | Wang J.,GuiZhou Province Hemopoietic Stem Cell Transplantation Center | Wang J.,Affiliated Hospital of Guiyang Medical College | Ma D.,Guizhou Province Laboratory of Hematological Disease Diagnostic and Treat Center | And 15 more authors.
Anti-Cancer Drugs | Year: 2014

The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source

Discover hidden collaborations