Time filter

Source Type

Yang C.,Chinese Academy of Sciences | Yang C.,Guizhou Institute of Subtropics Crops | Zhou Y.,Chinese Academy of Sciences | Zhou Y.,Huazhong Agricultural University | And 10 more authors.
Plant Physiology and Biochemistry

Glycine betaine (GB) accumulation is involved in abiotic stress. However, it is not known whether BADH, the key enzyme of GB synthesis, utilizes the antioxidant system to confer drought stress tolerance. In this study, a novel member of the ALDH10 gene family, SpBADH, was isolated from Sesuvium portulacastrum. The expression of this gene was up-regulated by NaCl, PEG6000, H2O2, ABA and high temperature in S. portulacastrum. SpBADH overexpression in Arabidopsis resulted in higher BADH activity and GB content and might increase tolerance to drought/osmotic stresses, specifically strong tolerance to drought stress. Transgenic lines exhibited lower MDA and H2O2 contents but higher proline, POD, SOD and CAT contents than the wild type under drought and osmotic stresses. SpBADH overexpression in Arabidopsis also enhanced the expression of ROS-related genes including AtSOD, AtPOD, AtCAT, AtAPX and Atpsb under drought and osmotic stresses. Thus, SpBADH increases plant tolerance to drought or osmotic stresses by reducing H2O2, increasing proline, and activating antioxidative enzymes to improve ROS scavenging. © 2015 Elsevier Masson SAS. Source

Discover hidden collaborations