Time filter

Source Type

Fu Y.,Guizhou University | Fu Y.,Chinese Academy of Geological Sciences | Dong L.,Xian Jiaotong University | Li C.,Chinese Academy of Geological Sciences | And 4 more authors.
Journal of Earth Science | Year: 2016

The Terreneuvian Epoch (541–521 Ma)is also an important period for metallogenesis in South China, as was represented by the widespread occurrences of Ni-Mo polymetallic layers on the antecedent shallow platform margin and the V-enriched black shales in deeper slope-basin settings. In this study, we have measured Re-Os isochron ages of Ni-Mo polymetallic layers (Songlin, Niuchang, Sancha, Chuanpengwan), V-rich black shales (Bahuang), and non-metalliferous black shales (Shuidong) in the basal Niutitang Formation in Guizhou and Hunan province, South China. The Ni-Mo polymetallic layers and V-enriched black shales have similar Re-Os isochron ages, suggesting concurrent deposition of these two types of metalliferous ores. This suggestion is consistent with the traditional stratigraphic correlation by using the nodular phosphorite bed directly underlying these metalliferous layers as a stratigraphic marker. Furthermore, the metalliferous ores and non-metalliferous black shales have similar initial 187Os/188Os ratios of 0.8–0.9, arguing for a dominant seawater origin with minor contribution of hydrothermal activity. Furthermore, Re-Os isotopic data also imply that Ni-Mo and V ore might have derived from the same source. We suggest that the spatial distribution of metalliferous ores can be explained by the development of non-sulfidic anoxic-suboxic wedge (NSASW) in the slope-basin and sulfidic wedge in the previous platform margin. Upwelling of deep water first transects the mildly reduced, organic rich NSASW, in which V (V) is reduced to V (IV), and is preferentially removed from seawater by organometallic complex formation. As a result, V-rich black shale deposits in the slope-basin of Yangtze Platform. Further movement of deep water into the sulfidic platform margin results in Ni-Mo polymetallic layer formation. © 2016, China University of Geosciences and Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations