Time filter

Source Type

Hørsholm, Denmark

Vrang N.,Gubra ApS | Grove K.,Oregon Health And Science University
Brain Research | Year: 2011

The nucleus of the solitary tract (NTS) contains a small population of neurons expressing preproglucagon. In these neurons preproglucagon is processed to the glucagon-like-peptides 1 and 2 (GLP-1 and GLP-2) and oxyntomodulin. Whereas the neuroanatomy of these neurons is well characterized in rodents the location and projection of preproglucagon neurons have never been described in primates. The purpose of the present study was to characterize the location of preproglucagon neurons and their projections in the non-human primate using radioactive in situ hybridization and immunohistochemistry. In situ hybridization revealed preproglucagon mRNA expressing neurons in the caudal nucleus of the solitary tract extending laterally through the intermediate reticular nucleus into the A1 area. Using an antibody raised against rat GLP-2, GLP-2-immunoreactive (- ir) cell bodies were found in the same areas as the preproglucagon mRNA. Only very few GLP-2-ir nerve fibers were observed in the caudal brainstem and mostly in the same areas as the GLP-2-ir cell bodies. The most prominent GLP-2-ir terminal fields were detected in the hypothalamus and rostrally in the bed nucleus of the stria terminalis complex. In the hypothalamus, GLP-2-ir fibers arborized extensively in the paraventricular nucleus of the hypothalamus (PVN), the dorsomedial hypothalamic nucleus (DMH) and the arcuate nucleus (Arc), the latter containing the densest fiber-plexus. The findings indicate that the brainstem preproglucagon neuronal system is highly conserved between rat and non-human primate with the exception of a much denser innervation of the mediobasal hypothalamus in the primate brain. © 2011 Elsevier B.V.

Vrang N.,Gubra ApS | Larsen P.J.,Eli Lilly and Company
Progress in Neurobiology | Year: 2010

The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system. © 2010 Elsevier Ltd.

Larsen J.B.,Copenhagen University | Jensen M.B.,Copenhagen University | Jensen M.B.,Buck Institute for Research on Aging | Bhatia V.K.,Copenhagen University | And 10 more authors.
Nature Chemical Biology | Year: 2015

Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general. © 2015 Nature America, Inc. All rights reserved.

Aim: Diabetes is characterized by β-cell deficiency, and therefore restoration of β-cell function has been suggested as a potential therapy. We hypothesized that a novel glucagon-like peptide-1 (GLP-1)-gastrin dual agonist, ZP3022, improves glycaemic control via improvement of β-cell status in db/db mice. Methods: Diabetic mice were studied following short- or long-term treatment with either the GLP-1-gastrin dual agonist or the commercially available GLP-1 agonists (exendin-4 and liraglutide). The effects on glycaemic control were addressed by repeated glucose tolerance tests and/or measurements of HbA1c levels, and pancreatic islet and β-cell masses were determined by stereology. Results: ZP3022 and the pure GLP-1 agonists improved glycaemic control after both short- and long-term treatment compared with vehicle. Interestingly, the effect was sustainable only in mice treated with ZP3022. Stereology data displayed a dose-dependent increase of β-cell mass (p < 0.05) following treatment with ZP3022, whereas no significant effect of liraglutide was observed (β-cell mass: vehicle 3.7 ± 0.2mg; liraglutide (30nmol/kg) 3.4 ± 0.5mg; ZP3022 (30nmol/kg) 4.3 ± 0.4mg and ZP3022 (100nmol/kg) 5.2 ± 0.4mg). Conclusion: The novel GLP-1-gastrin dual agonist, ZP3022, improved glycaemic control in db/db mice, and pancreatic islet and β-cell mass increased significantly following treatment with ZP3022 compared with vehicle. © 2012 Blackwell Publishing Ltd.

Jelsing J.,Gubra ApS | Vrang N.,Gubra ApS | Hansen G.,Gubra ApS | Tang-Christensen M.,Gubra ApS
Diabetes, Obesity and Metabolism | Year: 2012

Aim: Previous studies with the novel once daily glucagon-like peptide-1 (GLP-1) analogue liraglutide and the GLP-1 receptor agonist exenatide have revealed profound insulinotrophic and antidiabetic effects, but also potent effects on gastric emptying (GE) and long-term and lasting reductions in body weight. In this study, we examined the acute and chronic effects of two different GLP-1 analogues with different pharmacokinetic profiles on GE, food intake and body weight. Methods: On the basis of a series of dose-finding studies, the doses of exenatide and liraglutide with similar acute anorectic effects were identified. GE was assessed using a standard acetaminophen release assay. After the acute test, rats were dosed bi-daily for 14 days in which period food intake and body weight was monitored. On day 14, the GE rate was reassessed. Results: While both compounds exerted robust acute reductions in GE, the effect was markedly diminished following 14 days of dosing with liraglutide. In contrast, exenatide-treated rats still displayed a profound reduction in GE at the 14-day time-point. Both compounds exerted similar effects on body weight. Conclusion: The data suggest that the 'gastric inhibitory' GLP-1 receptors in rats are subject to desensitization/tachyphylaxis but that this effect is dependent on full 24-h exposure as obtained by liraglutide. The body weight-lowering effects of GLP-1 receptor stimulation are not subject to desensitization. These data indicate that regulation of appetite signals in the brain, and not GE, is the main mechanism for liraglutide-induced weight loss. © 2012 Blackwell Publishing Ltd.

Discover hidden collaborations