Entity

Time filter

Source Type

Hørsholm, Denmark

Dyrby T.B.,Copenhagen University | Dyrby T.B.,Technical University of Denmark | Baare W.F.,Copenhagen University | Baare W.F.,Center for Integrated Molecular Brain Imaging | And 5 more authors.
Human Brain Mapping | Year: 2011

Diffusion tensor (DT) imaging and related multifiber reconstruction algorithms allow the study of in vivo microstructure and, by means of tractography, structural connectivity. Although reconstruction algorithms are promising imaging tools, high-quality diffusion-weighted imaging (DWI) datasets for verification and validation of postprocessing and analysis methods are lacking. Clinical in vivo DWI is limited by, for example, physiological noise and low signal-to-noise ratio. Here, we performed a series of DWI measurements on postmortem pig brains, which resemble the human brain in neuroanatomical complexity, to establish an ex vivo imaging pipeline for generating high-quality DWI datasets. Perfusion fixation ensured that tissue characteristics were comparable to in vivo conditions. There were three main results: (i) heat conduction and unstable tissue mechanics accounted for time-varying artefacts in the DWI dataset, which were present for up to 15 h after positioning brain tissue in the scanner; (ii) using fitted DT, q-ball, and persistent angular structure magnetic resonance imaging algorithms, any b-value between ∼2,000 and ∼8,000 s/mm2, with an optimal value around 4,000 s/mm2, allowed for consistent reconstruction of fiber directions; (iii) diffusivity measures in the postmortem brain tissue were stable over a 3-year period. On the basis of these results, we established an optimized ex vivo pipeline for high-quality and high-resolution DWI. The pipeline produces DWI data sets with a high level of tissue structure detail showing for example two parallel horizontal rims in the cerebral cortex and multiple rims in the hippocampus. We conclude that high-quality ex vivo DWI can be used to validate fiber reconstruction algorithms and to complement histological studies. © 2010 Wiley-Liss, Inc. Source


Paulsen S.J.,Gubra | Larsen L.K.,Molecular Biology
Methods in Molecular Biology | Year: 2011

Laser capture microdissection (LCM) provides an efficient and precise method for the sampling of single cells or subgroups of cells in heterogeneous tissues such as the brain. We have recently applied LCM coupled with microarray analysis for the examination of gene expression in the hypothalamic arcuate nucleus of free fed versus fasted rats. We successfully used QPCR analysis to validate our findings and to confirm the regulation of several known neuropeptides. We show that the combination of LCM and QPCR analysis provides a reliable, fast, and efficient alternative to semiquantitative in situ hybridization analysis of gene expression. © 2011 Springer Science+Business Media, LLC. Source


Jelsing J.,Gubra | Eibye-Jacobsen D.,Natural History Museum of Denmark
Journal of Morphology | Year: 2010

The nuchal organs of annelid Laonice bahusiensis (Spionidae) from northern Europe have been studied using scanning and transmission electron microscopy. L. bahusiensis is the first spionid species in which extensively developed, continuous nuchal organs are described. The nuchal organs of this genus are the longest known among polychaete annelids. They consist of paired double bands extending from the prostomium on a mid-dorsal caruncle for about 24-30 setigers. Their microanatomy corresponds to the general structural plan of nuchal organs: there are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving-stone-like cover and innervated by one pair of longitudinally elongated nuchal nerves. These findings clearly favor the hypothesis that the paired, extensively developed ciliated structures found in some Spionidae are homologous with the prostomial nuchal organs characteristic of polychaete annelids. © 2009 Wiley-Liss, Inc. Source


A. Koehler J.,Lunenfeld Tanenbaum Research Institute | Baggio L.L.,Lunenfeld Tanenbaum Research Institute | Cao X.,Lunenfeld Tanenbaum Research Institute | Abdulla T.,Lunenfeld Tanenbaum Research Institute | And 5 more authors.
Diabetes | Year: 2015

Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67+ cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP- 1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice. © 2015 by the American Diabetes Association. Source


Sharkovska Y.,Charite - Medical University of Berlin | Reichetzeder C.,Institute of Pharmacology | Reichetzeder C.,University of Potsdam | Alter M.,Institute of Pharmacology | And 5 more authors.
Journal of Hypertension | Year: 2014

Background: Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. Method: This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/ db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of reninangiotensin system blockade by enalapril. Ten-week-old male diabetic db/db mice were treated for 3 months with either vehicle (n=10), 3mg linagliptin/kg per day (n=8), or 20mg enalapril/kg per day (n=10). Heterozygous db/m mice treated with vehicle served as healthy controls (n=8). Results: Neither linagliptin nor enalapril had significant effects on the parameters of glucose metabolism or blood pressure in diabetic db/db mice. However, linagliptin treatment reduced albuminuria and attenuated kidney injury. In addition, expression of podocyte marker podocalyxin was normalized. We also analysed DPP-4 expression by immunofluorescence in human kidney biopsies and detected upregulation of DPP-4 in the glomeruli of patients with diabetic nephropathy, suggesting that our findings might be of relevance for human kidney disease as well. Conclusion: Treatment with DPP-4 inhibitor linagliptin delays the progression of diabetic nephropathy damage in a glucose-independent and blood-pressure-independent manner. The observed effects may be because of the attenuation of podocyte injury and inhibition of myofibroblast transformation. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source

Discover hidden collaborations