Entity

Time filter

Source Type


Ghazi N.G.,King Khaled Eye Specialist Hospital | Ghazi N.G.,University of Virginia | Abboud E.B.,King Khaled Eye Specialist Hospital | Nowilaty S.R.,King Khaled Eye Specialist Hospital | And 25 more authors.
Human Genetics | Year: 2016

MERTK is an essential component of the signaling network that controls phagocytosis in retinal pigment epithelium (RPE), the loss of which results in photoreceptor degeneration. Previous proof-of-concept studies have demonstrated the efficacy of gene therapy using human MERTK (hMERTK) packaged into adeno-associated virus (AAV2) in treating RCS rats and mice with MERTK deficiency. The purpose of this study was to assess the safety of gene transfer via subretinal administration of rAAV2-VMD2-hMERTK in subjects with MERTK-associated retinitis pigmentosa (RP). After a preclinical phase confirming the safety of the study vector in monkeys, six patients (aged 14 to 54, mean 33.3 years) with MERTK-related RP and baseline visual acuity (VA) ranging from 20/50 to <20/6400 were entered in a phase I open-label, dose-escalation trial. One eye of each patient (the worse-seeing eye in five subjects) received a submacular injection of the viral vector, first at a dose of 150 µl (5.96 × 1010vg; 2 patients) and then 450 µl (17.88 × 1010vg; 4 patients). Patients were followed daily for 10 days at 30, 60, 90, 180, 270, 365, 540, and 730 days post-injection. Collected data included (1) full ophthalmologic examination including best-corrected VA, intraocular pressure, color fundus photographs, macular spectral domain optical coherence tomography and full-field stimulus threshold test (FST) in both the study and fellow eyes; (2) systemic safety data including CBC, liver and kidney function tests, coagulation profiles, urine analysis, AAV antibody titers, peripheral blood PCR and ASR measurement; and (3) listing of ophthalmological or systemic adverse effects. All patients completed the 2-year follow-up. Subretinal injection of rAAV2-VMD2-hMERTK was associated with acceptable ocular and systemic safety profiles based on 2-year follow-up. None of the patients developed complications that could be attributed to the gene vector with certainty. Postoperatively, one patient developed filamentary keratitis, and two patients developed progressive cataract. Of these two patients, one also developed transient subfoveal fluid after the injection as well as monocular oscillopsia. Two patients developed a rise in AAV antibodies, but neither patient was positive for rAAV vector genomes via PCR. Three patients also displayed measurable improved visual acuity in the treated eye following surgery, although the improvement was lost by 2 years in two of these patients. Gene therapy for MERTK-related RP using careful subretinal injection of rAAV2-VMD2-hMERTK is not associated with major side effects and may result in clinical improvement in a subset of patients. © 2016, Springer-Verlag Berlin Heidelberg. Source


Gross A.M.,University of California at San Diego | Jaeger P.A.,University of California at San Diego | Kreisberg J.F.,University of California at San Diego | Licon K.,University of California at San Diego | And 12 more authors.
Molecular Cell | Year: 2016

HIV-infected individuals are living longer on antiretroviral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First, we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across >80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA). We find that decreased HLA methylation is predictive of lower CD4 / CD8 T cell ratio, linking molecular aging, epigenetic regulation, and disease progression. Gross et al. investigate the impact of chronic HIV infection by profiling the DNA methylomes of HIV+ individuals and matched HIV- controls. Using epigenetic models of aging, they observe that HIV+ individuals show an age advancement of 4.9 years in whole blood and validate these results in pure cell samples. © 2016 Elsevier Inc. Source


Li G.,University of Sichuan | Xu F.,Sun Yat Sen University | Zhu J.,Institute for Engineering in Medicine | Krawczyk M.,Institute for Engineering in Medicine | And 27 more authors.
Journal of Biological Chemistry | Year: 2015

PAX6 is a master regulatory gene involved in neuronal cell fate specification. It also plays a critical role in early eye field and subsequent limbal stem cell (LSC) determination during eye development. Defects in Pax6 cause aniridia and LSC deficiency in humans and the Sey (Small eye) phenotype in mice (Massé, K., Bhamra, S., Eason, R., Dale, N., and Jones, E. A. (2007) Nature 449, 1058-1062). However, how PAX6 specifies LSC and corneal fates during eye development is not well understood. Here, we show that PAX6 is expressed in the primitive eye cup and later in corneal tissue progenitors in early embryonic development. In contrast, p63 expression commences after that of PAX6 in ocular adnexal and skin tissue progenitors and later in LSCs. Using an in vitro feeder-free culture system, we show that PAX6 knockdown in LSCs led to up-regulation of skin epidermis-specific keratins concomitant with differentiation to a skin fate. Using gene expression analysis, we identified the involvement of Notch, Wnt, and TGF-β signaling pathways in LSC fate determination. Thus, loss of PAX6 converts LSCs to epidermal stem cells, as demonstrated by a switch in the keratin gene expression profile and by the appearance of congenital dermoid tissue. © 2015, American Society for Biochemistry and Molecular Biology Inc. All rights reserved. Source


Skowronska-Krawczyk D.,University of California at San Diego | Zhao L.,University of California at San Diego | Zhao L.,Sun Yat Sen University | Zhao L.,Peking University | And 42 more authors.
Molecular Cell | Year: 2015

Glaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a). We further show that the upregulation of homozygous SIX6 risk alleles (CC) leads to an increase in p16INK4a expression, with subsequent cellular senescence, as evidenced in a mouse model of elevated IOP and in human POAG eyes. Our data indicate that SIX6 and/or IOP promotes POAG by directly increasing p16INK4a expression, leading to RGC senescence in adult human retinas. Our study provides important insights linking genetic susceptibility to the underlying mechanism of RGC death and provides a unified theory of glaucoma pathogenesis. Zhang et al. report p16INK4a as a downstream integrator of diverse signals, such as inherited genetic risk, age, and intraocular pressure, in the pathogenesis of glaucoma. They demonstrate that upregulation of SIX6 upon stress directly increases p16INK4a, leading to retinal ganglion cell senescence and death. © 2015 Elsevier Inc. Source

Discover hidden collaborations