Entity

Time filter

Source Type


Luo C.-F.,Guangzhou University | Luo C.-F.,Guangzhou Institute of Cardiovascular Disease | Hou N.,Guangzhou Institute of Cardiovascular Disease | Hou N.,Guangzhou University | And 13 more authors.
International Journal of Nanomedicine | Year: 2013

Puerarin has multiple pharmacological effects and is widely prescribed for patients with cardiovascular diseases including hypertension, cerebral ischemia, myocardial ischemia, diabetes mellitus, and arteriosclerosis. We have successfully prepared puerarin-loaded solid lipid nanoparticles (Pue-SLNs) for oral administration. Pue-SLNs are prepared using monostearin, soya lecithin, and poloxamer 188. SLNs may alter the course of puerarin absorption predominantly to and through lymphatic routes and regions, presumably following a transcellular path of lipid absorption, especially by enterocytes and polar epithelial cells of the intestine. The alteration of absorption might influence the metabolic profile of puerarin when incorporated into SLNs. In the present study, we investigated the metabolic profile of puerarin in rat plasma and urine using rapid resolution liquid chromatography-tandem mass spectrometry after a single-dose intragastric administration of Pue-SLNs in comparison with puerarin suspension. Two glucuronidated metabolites of puerarin, puerarin-4′-O-glucuronide and puerarin-7-O-glucuronide, were detected in rat plasma and urine after intragastric administration of Pue-SLNs, with the latter acting as the major metabolite. Similar results were found in rat plasma and urine after intragastric administration of puerarin suspension. The results suggest that incorporation of puerarin into SLNs does not change either the position of glucuronidation or the metabolic pathway of puerarin in rats. © 2013 Luo et al, publisher and licensee Dove Medical Press Ltd.


Yang H.,Guangzhou University | Zhong Y.,Guangzhou Institute of Cardiovascular Disease | Xie H.,Guangzhou University | Lai X.,Guangzhou University | And 4 more authors.
Biochemical Pharmacology | Year: 2013

Differential expression of long non-coding RNAs (lncRNAs) plays critical roles in hepatocarcinogenesis. Considerable attention has focused on the antitumor effect of histone deacetylase inhibitor (Trichostatin A, TSA) as well as the coding gene expression-induced apoptosis of cancer cells. However, it is not known whether lncRNA has a role in TSA-induced apoptosis of human hepatocellular carcinoma (HCC) cells. The global expression of lncRNAs and coding genes was analyzed with the Human LncRNA Array V2.0 after 24 h treatment. Expression was verified in cell lines and tissues by quantitative real-time PCR. The data showed that 4.8% (959) of lncRNA and 6.1% (1849) of protein coding gene were significantly differentially expressed. The differential expressions of lncRNA and protein coding genes had distinguishable hierarchical clustering expression profiling pattern. Among these differentially expressed lncRNAs, the greatest change was noted for uc002mbe.2, which had more than 300 folds induction upon TSA treatment. TSA selectively induced uc002mbe.2 in four studied HCC cell lines. Compared with normal human hepatocytes and adjacent noncancerous tissues, uc002mbe.2 expression level was significantly lower in the HCC cell lines and liver cancer tissues. The TSA-induced uc002mbe.2 expression was positively correlated with the apoptotic effect of TSA in HCC cells. In addition, knockdown the expression of uc002mbe.2 significantly reduced TSA-induced apoptosis of Huh7cells. Therefore, TSA-induced apoptosis of HCC cells is uc002mbe.2 dependent and reduced expression of uc002mbe.2 may be associated with liver carcinogenesis. © 2013 Elsevier Inc. All rights reserved.


Liu S.-J.,Guangzhou Institute of Cardiovascular Disease | Liu W.-H.,Guangzhou Institute of Cardiovascular Disease | Zhong Y.,Guangzhou Institute of Cardiovascular Disease | Zhong Y.,Guangzhou University | And 2 more authors.
Biochemistry (Moscow) | Year: 2013

C-reactive protein (CRP) is a significant contributor to atherosclerosis and a powerful predictor of cardiovascular risk. The role of CRP in endothelial cell (EC) activation has been extensively investigated, but the underlying mechanisms have not been fully elucidated. The effect of glycogen synthase kinase-3β (GSK-3β) on CRP-induced EC activation was evaluated in this study. We observed that CRP decreased endothelial nitric oxide synthase (eNOS) activity during EC activation. CRP also activated GSK-3β by dephosphorylating its Ser9 level and reducing β-catenin protein expression in a time-dependent manner. We also found that the GSK-3β inhibitors TDZD-8 and SB415286 partially restored eNOS activity and suppressed the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. These data provide new evidence for the involvement of GSK-3β in EC activation. © 2013 Pleiades Publishing, Ltd.


Dai W.,Guangzhou University | Dai W.,Guangzhou Institute of Cardiovascular Disease | Dong Q.,Guangzhou University | Chen M.,Guangzhou Institute of Cardiovascular Disease | And 5 more authors.
Cardiovascular Journal of Africa | Year: 2016

Aim: In this study we designed a modified method of abdominal aortic constriction (AAC) in order to establish a stable animal model of left ventricular hypertrophy (LVH). We also evaluated cardiac structure and function in rats with myocardial hypertrophy using echocardiography, and provide a theory and experimental basis for the application of drug interventions using the LVH animal model. We hope this model will provide insight into novel clinical therapies for LVH. Methods: The abdominal aorta of male Wistar rats (80-100 g) was constricted between the branches of the coeliac and anterior mesenteric arteries, to a diameter of 0.55 mm. Echocardiography, using a linear phase array probe, combined with histology and plasma BNP concentration, was performed at three, four and six weeks post AAC. Results: The acute (24-hour) mortality rate was lower (8%) than in previous reports (15%) using this modified rat model. Compared with shams, animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), crosssectional area (CSA) of myocytes, and perivascular fibrosis; while the ejection fraction (EF), fractional shortening (FS) and cardiac output (CO) were consistently lower at each time interval. Notably, differences in these parameters between the AAC and sham groups were significant by three weeks and reached a peak at four weeks. Following AAC, plasma B- Type natriuretic peptide (BNP) level was gradually elevated, compared with the sham group, between three and six weeks. Conclusion: This modified AAC model induced LVH both stably and safely by week four post surgery. Echocardiography was accurately able to assess changes in chamber dimensions and systolic properties in the rats with LVH.


Dai W.-J.,Guangzhou University | Dai W.-J.,Guangzhou Institute of Cardiovascular Disease | Dong Q.,Guangzhou University | Chen M.-S.,Guangzhou Institute of Cardiovascular Disease | And 4 more authors.
Journal of Huazhong University of Science and Technology - Medical Science | Year: 2014

This study was aimed to establish a stable animal model of left ventricular hypertrophy (LVH) to provide theoretical and experimental basis for understanding the development of LVH. The abdominal aorta of male Wistar rats (80–100 g) was constricted to a diameter of 0.55 mm between the branches of the celiac and anterior mesenteric arteries. Echocardiography using a linear phased array probe was performed as well as pathological examination and plasma B-type natriuretic peptide (BNP) measurement at 3, 4 and 6 weeks after abdominal aortic constriction (AAC). The results showed that the acute mortality rate (within 24 h) of this modified rat model was 8%. Animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), cross-sectional area (CSA) of myocytes, and perivascular fibrosis; the ejection fraction (EF), fractional shortening (FS), and cardiac output (CO) were consistently lower at each time point after AAC. Notably, differences in these parameters between AAC group and sham group were significant by 3 weeks and reached peaks at 4th week. Following AAC, the plasma BNP was gradually elevated compared with the sham group at 3rd and 6th week. It was concluded that this modified AAC model can develop LVH, both stably and safely, by week four post-surgery; echocardiography is able to assess changes in chamber dimensions and systolic properties accurately in rats with LVH. © 2014, Huazhong University of Science and Technology and Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations