Guangzhou Institute of Cardiovascular Disease

Guangzhou, China

Guangzhou Institute of Cardiovascular Disease

Guangzhou, China
SEARCH FILTERS
Time filter
Source Type

Yang H.,Guangzhou University | Zhong Y.,Guangzhou Institute of Cardiovascular Disease | Xie H.,Guangzhou University | Lai X.,Guangzhou University | And 4 more authors.
Biochemical Pharmacology | Year: 2013

Differential expression of long non-coding RNAs (lncRNAs) plays critical roles in hepatocarcinogenesis. Considerable attention has focused on the antitumor effect of histone deacetylase inhibitor (Trichostatin A, TSA) as well as the coding gene expression-induced apoptosis of cancer cells. However, it is not known whether lncRNA has a role in TSA-induced apoptosis of human hepatocellular carcinoma (HCC) cells. The global expression of lncRNAs and coding genes was analyzed with the Human LncRNA Array V2.0 after 24 h treatment. Expression was verified in cell lines and tissues by quantitative real-time PCR. The data showed that 4.8% (959) of lncRNA and 6.1% (1849) of protein coding gene were significantly differentially expressed. The differential expressions of lncRNA and protein coding genes had distinguishable hierarchical clustering expression profiling pattern. Among these differentially expressed lncRNAs, the greatest change was noted for uc002mbe.2, which had more than 300 folds induction upon TSA treatment. TSA selectively induced uc002mbe.2 in four studied HCC cell lines. Compared with normal human hepatocytes and adjacent noncancerous tissues, uc002mbe.2 expression level was significantly lower in the HCC cell lines and liver cancer tissues. The TSA-induced uc002mbe.2 expression was positively correlated with the apoptotic effect of TSA in HCC cells. In addition, knockdown the expression of uc002mbe.2 significantly reduced TSA-induced apoptosis of Huh7cells. Therefore, TSA-induced apoptosis of HCC cells is uc002mbe.2 dependent and reduced expression of uc002mbe.2 may be associated with liver carcinogenesis. © 2013 Elsevier Inc. All rights reserved.


Dai W.,Guangzhou University | Dai W.,Guangzhou Institute of Cardiovascular Disease | Dong Q.,Guangzhou University | Chen M.,Guangzhou Institute of Cardiovascular Disease | And 5 more authors.
Cardiovascular Journal of Africa | Year: 2016

Aim: In this study we designed a modified method of abdominal aortic constriction (AAC) in order to establish a stable animal model of left ventricular hypertrophy (LVH). We also evaluated cardiac structure and function in rats with myocardial hypertrophy using echocardiography, and provide a theory and experimental basis for the application of drug interventions using the LVH animal model. We hope this model will provide insight into novel clinical therapies for LVH. Methods: The abdominal aorta of male Wistar rats (80-100 g) was constricted between the branches of the coeliac and anterior mesenteric arteries, to a diameter of 0.55 mm. Echocardiography, using a linear phase array probe, combined with histology and plasma BNP concentration, was performed at three, four and six weeks post AAC. Results: The acute (24-hour) mortality rate was lower (8%) than in previous reports (15%) using this modified rat model. Compared with shams, animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), crosssectional area (CSA) of myocytes, and perivascular fibrosis; while the ejection fraction (EF), fractional shortening (FS) and cardiac output (CO) were consistently lower at each time interval. Notably, differences in these parameters between the AAC and sham groups were significant by three weeks and reached a peak at four weeks. Following AAC, plasma B- Type natriuretic peptide (BNP) level was gradually elevated, compared with the sham group, between three and six weeks. Conclusion: This modified AAC model induced LVH both stably and safely by week four post surgery. Echocardiography was accurately able to assess changes in chamber dimensions and systolic properties in the rats with LVH.


Dai W.-J.,Guangzhou University | Dai W.-J.,Guangzhou Institute of Cardiovascular Disease | Dong Q.,Guangzhou University | Chen M.-S.,Guangzhou Institute of Cardiovascular Disease | And 4 more authors.
Journal of Huazhong University of Science and Technology - Medical Science | Year: 2014

This study was aimed to establish a stable animal model of left ventricular hypertrophy (LVH) to provide theoretical and experimental basis for understanding the development of LVH. The abdominal aorta of male Wistar rats (80–100 g) was constricted to a diameter of 0.55 mm between the branches of the celiac and anterior mesenteric arteries. Echocardiography using a linear phased array probe was performed as well as pathological examination and plasma B-type natriuretic peptide (BNP) measurement at 3, 4 and 6 weeks after abdominal aortic constriction (AAC). The results showed that the acute mortality rate (within 24 h) of this modified rat model was 8%. Animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), cross-sectional area (CSA) of myocytes, and perivascular fibrosis; the ejection fraction (EF), fractional shortening (FS), and cardiac output (CO) were consistently lower at each time point after AAC. Notably, differences in these parameters between AAC group and sham group were significant by 3 weeks and reached peaks at 4th week. Following AAC, the plasma BNP was gradually elevated compared with the sham group at 3rd and 6th week. It was concluded that this modified AAC model can develop LVH, both stably and safely, by week four post-surgery; echocardiography is able to assess changes in chamber dimensions and systolic properties accurately in rats with LVH. © 2014, Huazhong University of Science and Technology and Springer-Verlag Berlin Heidelberg.


Liu B.,Guangzhou University | Liu B.,Guangzhou Institute of Cardiovascular Disease | Liu N.-N.,Guangzhou University | Liu N.-N.,Guangzhou Institute of Cardiovascular Disease | And 10 more authors.
Biochemical and Biophysical Research Communications | Year: 2016

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition of PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation. © 2016 Elsevier Inc.


Xu Y.,Guangzhou University | Chen T.,Guangzhou University | Liao D.,Guangzhou University | Wu X.,Guangzhou University | And 4 more authors.
Tumor Biology | Year: 2016

Tazarotene-induced gene 3 (TIG3) was first characterized in tazarotene-treated human keratinocytes and identified as a retinoic acid responder gene, an important mediator of antitumor effects by retinoids. In this study, we aim to investigate the inhibitory effect of TIG3 on the growth of liver cancer and explore its underlying mechanism. Human hepatocellular carcinoma (HCC) Hep3B cells were transfected with plasmid GV141 carrying full-length TIG3 complementary DNA (cDNA). The effects of TIG3 on cell proliferation, apoptosis, and migration were determined in vitro. The suppressor effect of TIG3 on tumor growth was evaluated in vivo in a nude mouse HCC model. We observed that TIG3 expression is decreased in the Hep3B cell line as well as primary HCC tumors, and TIG3 expression inversely correlates with Ki-67 expression. Overexpression of TIG3 suppresses tumor growth in HCC both in vitro and in vivo via ERK1/2 inhibition by promoting apoptosis and inhibiting proliferation and migration. These findings identify TIG3 as an attractive therapeutic target for HCC. © 2016 International Society of Oncology and BioMarkers (ISOBM)


Zhang Z.-H.,Guangzhou University | Li J.,Guangzhou University | Liu B.-R.,Guangzhou Institute of Cardiovascular Disease | Luo C.-F.,Guangzhou University | And 7 more authors.
Journal of Cardiovascular Pharmacology | Year: 2013

ABSTRACT:: MicroRNA (miR)-26 was found to be downregulated in cardiac diseases. In this study, the critical role of miR-26 in myocardial hypertrophy in both in vivo and in vitro was investigated. Sixteen male Wistar rats that underwent sham or transverse abdominal aortic constriction (TAAC) surgery were divided into control or TAAC group. Cardiomyocytes were isolated from neonatal Sprague-Dawley rats. Our study demonstrated that miR-26a/b was downregulated in both TAAC rat model and cardiomyocytes. The results of luciferase assays also suggested that glycogen synthase kinase 3β (GSK3β) may be a direct target of miR-26. The overexpression of miR-26 attenuated GSK3β expression and inhibited myocardial hypertrophy. The downregulation of miR-26 reversed these effects. Furthermore, silence of GSK3β gene phenocopied the anti-hypertrophy effects of miR-26, whereas overexpression of this protein attenuated the effects of miR-26. Taken together, these data suggest that miR-26 regulates pathological structural changes in the rat heart, which may be associated with suppression of the GSK3β signaling pathway, and implicate the potential application of miR-26 in diagnosis and therapy of cardiac hypertrophy. Copyright © 2013 by Lippincott Williams and Wilkins.


Luo C.-F.,Guangzhou University | Luo C.-F.,Guangzhou Institute of Cardiovascular Disease | Hou N.,Guangzhou Institute of Cardiovascular Disease | Hou N.,Guangzhou University | And 13 more authors.
International Journal of Nanomedicine | Year: 2013

Puerarin has multiple pharmacological effects and is widely prescribed for patients with cardiovascular diseases including hypertension, cerebral ischemia, myocardial ischemia, diabetes mellitus, and arteriosclerosis. We have successfully prepared puerarin-loaded solid lipid nanoparticles (Pue-SLNs) for oral administration. Pue-SLNs are prepared using monostearin, soya lecithin, and poloxamer 188. SLNs may alter the course of puerarin absorption predominantly to and through lymphatic routes and regions, presumably following a transcellular path of lipid absorption, especially by enterocytes and polar epithelial cells of the intestine. The alteration of absorption might influence the metabolic profile of puerarin when incorporated into SLNs. In the present study, we investigated the metabolic profile of puerarin in rat plasma and urine using rapid resolution liquid chromatography-tandem mass spectrometry after a single-dose intragastric administration of Pue-SLNs in comparison with puerarin suspension. Two glucuronidated metabolites of puerarin, puerarin-4′-O-glucuronide and puerarin-7-O-glucuronide, were detected in rat plasma and urine after intragastric administration of Pue-SLNs, with the latter acting as the major metabolite. Similar results were found in rat plasma and urine after intragastric administration of puerarin suspension. The results suggest that incorporation of puerarin into SLNs does not change either the position of glucuronidation or the metabolic pathway of puerarin in rats. © 2013 Luo et al, publisher and licensee Dove Medical Press Ltd.


PubMed | Guangzhou Institute of Cardiovascular Disease
Type: Journal Article | Journal: Biochemistry. Biokhimiia | Year: 2013

C-reactive protein (CRP) is a significant contributor to atherosclerosis and a powerful predictor of cardiovascular risk. The role of CRP in endothelial cell (EC) activation has been extensively investigated, but the underlying mechanisms have not been fully elucidated. The effect of glycogen synthase kinase-3 (GSK-3) on CRP-induced EC activation was evaluated in this study. We observed that CRP decreased endothelial nitric oxide synthase (eNOS) activity during EC activation. CRP also activated GSK-3 by dephosphorylating its Ser9 level and reducing -catenin protein expression in a time-dependent manner. We also found that the GSK-3 inhibitors TDZD-8 and SB415286 partially restored eNOS activity and suppressed the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. These data provide new evidence for the involvement of GSK-3 in EC activation.


PubMed | Guangzhou Institute of Cardiovascular Disease, Guangzhou Medical College, The Second Affiliated Hospital of Guangzhou Medical University and Guangzhou University
Type: Journal Article | Journal: Cardiovascular journal of Africa | Year: 2016

In this study we designed a modified method of abdominal aortic constriction (AAC) in order to establish a stable animal model of left ventricular hypertrophy (LVH). We also evaluated cardiac structure and function in rats with myocardial hypertrophy using echocardiography, and provide a theory and experimental basis for the application of drug interventions using the LVH animal model. We hope this model will provide insight into novel clinical therapies for LVH.The abdominal aorta of male Wistar rats (80-100 g) was constricted between the branches of the coeliac and anterior mesenteric arteries, to a diameter of 0.55 mm. Echocardiography, using a linear phase array probe, combined with histology and plasma BNP concentration, was performed at three, four and six weeks post AAC.The acute (24-hour) mortality rate was lower (8%) than in previous reports (15%) using this modified rat model. Compared with shams, animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), crosssectional area (CSA) of myocytes, and perivascular fibrosis; while the ejection fraction (EF), fractional shortening (FS) and cardiac output (CO) were consistently lower at each time interval. Notably, differences in these parameters between the AAC and sham groups were significant by three weeks and reached a peak at four weeks. Following AAC, plasma B-type natriuretic peptide (BNP) level was gradually elevated, compared with the sham group, between three and six weeks.This modified AAC model induced LVH both stably and safely by week four post surgery. Echocardiography was accurately able to assess changes in chamber dimensions and systolic properties in the rats with LVH.


PubMed | Guangzhou Institute of Cardiovascular Disease and Guangzhou University
Type: Journal Article | Journal: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine | Year: 2016

Tazarotene-induced gene 3 (TIG3) was first characterized in tazarotene-treated human keratinocytes and identified as a retinoic acid responder gene, an important mediator of antitumor effects by retinoids. In this study, we aim to investigate the inhibitory effect of TIG3 on the growth of liver cancer and explore its underlying mechanism. Human hepatocellular carcinoma (HCC) Hep3B cells were transfected with plasmid GV141 carrying full-length TIG3 complementary DNA (cDNA). The effects of TIG3 on cell proliferation, apoptosis, and migration were determined in vitro. The suppressor effect of TIG3 on tumor growth was evaluated in vivo in a nude mouse HCC model. We observed that TIG3 expression is decreased in the Hep3B cell line as well as primary HCC tumors, and TIG3 expression inversely correlates with Ki-67 expression. Overexpression of TIG3 suppresses tumor growth in HCC both in vitro and in vivo via ERK1/2 inhibition by promoting apoptosis and inhibiting proliferation and migration. These findings identify TIG3 as an attractive therapeutic target for HCC.

Loading Guangzhou Institute of Cardiovascular Disease collaborators
Loading Guangzhou Institute of Cardiovascular Disease collaborators