Entity

Time filter

Source Type


Ruan X.-L.,Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment | Qiu J.-J.,Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment | Wu C.,Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment | Huang T.,Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment | And 2 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2014

In this study, magnetic single-walled carbon nanotubes (MSWCNTs) were prepared by impregnating magnetic Fe3O4 nanoparticles onto the surfaces of carboxylic single-walled carbon nanotubes based on electrostatic interactions. The prepared MSWCNTs were used as the adsorbent for the dispersive solid-phase extraction (DSPE) of paraquat from human urine. After adsorption, the paraquat was quantitatively desorbed with 5%TFA in acetonitrile and determined by HPLC-MS. Extraction parameters such as the type of CNT adsorbent, extraction time, sample volume, wash solvent, and the type and volume of desorption solvent were optimized to obtain high DSPE recoveries and extraction efficiencies. Under the optimized conditions, the calibration curve was linear in the range 3.75-375.0μg/L with a correlation coefficient of 0.999 45. The LOD (S/N=3) and LOQ (S/N=10) were 0.94 and 2.82μg/L, respectively. The recoveries ranged from 92.89 to 108.9% for spiked real urine samples with RSDs below 3.21%. Finally, the new method was successfully used to determine paraquat in urine samples of suspected paraquat poisoning patients. The MSWCNTs exhibited suitable properties and a high adsorption capacity for the extraction of paraquat. © 2014 Elsevier B.V.


Huang Z.,Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment | Huang Z.,Nagoya University | Ichihara S.,Mie University | Oikawa S.,Mie University | And 8 more authors.
Toxicology and Applied Pharmacology | Year: 2015

1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000ppm for 8h/day for 1 or 4weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn2+)-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn2+-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. © 2014 Elsevier Inc.

Discover hidden collaborations