Time filter

Source Type

Yang Y.,South China University of Technology | Yang Y.,Guangdong Institute of Microbiology | Yang Y.,Guangdong Provincial Key Laboratory of Microbial Culture Collection | Yang Y.,State Key Laboratory of Applied Microbiology | And 9 more authors.
Bioresource Technology | Year: 2011

Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96. h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms. © 2011 Elsevier Ltd.

Loading Guangdong Provincial Key Laboratory of Microbial Culture Collection collaborators
Loading Guangdong Provincial Key Laboratory of Microbial Culture Collection collaborators