Time filter

Source Type

Piao X.-L.,Minzu University of China | Xing S.-F.,Minzu University of China | Lou C.-X.,Guangdong Medical Laboratory Animal Center | Chen D.-J.,Minzu University of China
Bioorganic and Medicinal Chemistry Letters | Year: 2014

Two new dammarane saponins, 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (1, namely damulin C) and 2α,3β,12β-trihydroxydammar-20(21),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (2, namely damulin D), were isolated from the ethanol extract of Gynostemma pentaphyllum, which had been heat processed by steaming at 125 °C. The NMR spectroscopic data of the novel saponins were completely assigned by using a combination of 2D NMR experiments including 1H-1H COSY, HSQC, and HMBC. Their cytotoxic activities of human liver adenocarcinoma HepG2 cells were evaluated in vitro. They showed cytotoxicities against HepG2 cell line with IC50 of 40 ± 0.7 and 38 ± 0.5 μg/ml, respectively. © 2014 Elsevier Ltd. All rights reserved. Source

Li Z.,New York University | Jiang H.,New York University | Ding T.,New York University | Ding T.,Fudan University | And 6 more authors.
Gastroenterology | Year: 2015

Background and Aims Phosphatidylcholines (PCs) are structural and functional constituents of cell membranes. The activity of acyltransferase (lysophosphatidylcholine acyltransferase [LPCAT]) is required for addition of polyunsaturated fatty acids to the sn-2 position of PCs and is therefore required to maintain cell membrane structure and function. LPCAT3 is the most abundant isoform of LPCAT in the small intestine and liver, which are important sites of plasma lipoprotein metabolism. We investigated the effects of Lpcat3 disruption on lipid metabolism in mice. Methods We disrupted the gene Lpcat3 in C57BL/6J mice to create LPCAT3 knockout (KO) mice. Livers and small intestinal tissues were collected from LPCAT3 KO and C57BL/6J parental strain (controls), and levels of LPCAT messenger RNAs and protein were measured. Levels of lipids and lipoproteins were measured in plasma samples. We isolated enterocytes from mice and measured levels of RNAs and proteins involved in lipid uptake by real-time polymerase chain reaction and immunoblot assays, respectively. We assessed lipid absorption and PC subspecies in the enterocyte plasma membrane using liquid chromatography with tandem mass spectometry. Results LPCAT3 KO mice survived only 3 weeks after birth. Oil Red O staining showed that the control but not LPCAT3 KO mice accumulated lipids in the small intestine; levels of Niemann-Pick C1-like 1 (NPC1L1) and fatty acid transporter protein 4 (FATP4), which regulate lipid uptake, were greatly reduced in the small intestines of LPCAT3 KO mice. Oral administration of PC and olive oil allowed the LPCAT3 KO mice to survive with the same body weights as controls, but the KO mice had shorter and wider small-intestinal villi and longer and bigger small intestines. Plasma membranes of enterocytes from LPCAT3 KO mice also had significant reductions in the composition of polyunsaturated PCs and reduced levels of NPC1L1, CD36, and FATP4 proteins. These reductions were associated with reduced intestinal uptake of lipid by the small intestine and reduced plasma levels of cholesterol, phospholipid, and triglyceride. Conclusions LPCAT3 KO mice have longer and larger small intestines than control mice, with shorter wide villi, reduced lipid absorption, and lower levels NPC1L1, CD36, and FATP4 proteins. Inhibition of LPCAT3 in the small intestine could be developed as an approach to treat hyperlipidemia. © 2015 AGA Institute. Source

Liao C.,Guangzhou Medical College | Fu F.,Guangzhou Medical College | Li R.,Guangzhou Medical College | Li R.,Sun Yat Sen University | And 9 more authors.
European Journal of Medical Genetics | Year: 2013

The molecular basis of autosomal dominant microcephaly, a disorder associated with small head circumferences that results in variable mental retardation, is largely unknown. In the present study, we conducted a variation analysis of the DPP6 gene in patients with autosomal dominant microcephaly and variable mental retardation. The copy number variation analysis of DPP6 was performed on DNA samples from 22 patients with microcephaly using high-resolution, array-based genomic hybridization, and sequence analysis was performed to screen mutations in another 50 microcephalic patients. Two de novo deletions and one missense mutation in familial microcephalic patients were identified. The transfection of plasmids encoding green fluorescent protein-pLLU2G-shDPP6 fusion proteins in mouse brains revealed that the decreased expression of the DPP6 gene slightly reduced the weight of the mouse brains and resulted in mouse learning disabilities compared with their wild-type littermates. Our data indicate that the loss-of-function variations in DPP6 are associated with autosomal dominant microcephaly and mental retardation. DPP6 appears to play a major role in the regulation of proliferation and migration of neurons in neurogenesis, most likely by participating in neuronal electrical excitability, synaptic integration, and plasticity. © 2013 Elsevier Masson SAS. Source

Tang X.,Guangdong Medical Laboratory Animal Center | Wu X.,Guangdong Medical Laboratory Animal Center | Dubois A.M.,State University of New York at Buffalo | Sui G.,Guangdong Medical Laboratory Animal Center | And 10 more authors.
Bulletin of Environmental Contamination and Toxicology | Year: 2013

Extensive uses of methyltin compounds in polyvinyl chloride (PVC) production have led to a dramatic increase of occupational-related methyltin poisoning accidents and the widespread contamination of methyltins in various environmental media. Here, we conducted studies to compare the acute toxicity induced by trimethyltin (TMT) and dimethyltin (DMT), and investigated the cumulative toxic effects of TMT in rats and mice. Neurobehavioral changes were observed in rats and mice treated with either DMT or TMT, but we also observed that both TMT and DMT exposure in rats significantly lowered the blood potassium level. Moreover, the cumulative toxic coefficient factor of TMT was 1.7 in rats versus 3.8 in mice, suggesting a high cumulative risk for rats and a moderate risk for mice. In summary, we demonstrated that acute and chronic exposure to methyltin compounds induced neurotoxicity and hypokalemia. Moreover, our study suggests that TMT can accumulate in the body and pose a risk for workers chronically exposed to a low dose of TMT. © 2013 Springer Science+Business Media New York. Source

Zhang H.,Lingnan Normal University | Li Z.,Sun Yat Sen University | Zhou Z.,Lingnan Normal University | Yang H.,Lingnan Normal University | And 2 more authors.
Pharmacology Biochemistry and Behavior | Year: 2016

Ginsenoside Rb3 has been proved to have antidepressant-like effects, which possesses 1 xylose and 3 glucose moieties with 20(S)-protopanaxadiol (PPD) as the aglycone. However, it is commonly accepted that orally ingested ginsenosides can be deglycosylated or partially deglycosylated into active derivatives by the intestinal bacteria. To identify potential antidepressant drug candidates, we compared the antidepressant-like activities between ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K (C-K), and PPD. Effects of acute (1-day), short chronic (7-days), and longer chronic treatments (14-days) with these ginsenosides (50 and 100 mg/kg, p.o.) on the behavioral changes in the forced swim test (FST), tail suspension test (TST) and open field test were investigated. Serum corticosterone and adrenocorticotropic hormone (ACTH) levels and mouse brain monoamine neurotransmitters 5-HT, NA and DA levels were measured using commercially available competitive enzyme-linked immunosorbent assay (ELISA) kits. Interestingly, C-K showed antidepressant-like activities similar to that of Rb3, and Rg3 displayed antidepressant-like effects at lower dosage and faster time, indicating it has better effects than Rb3, whereas Rh2 and PPD failed to show any effect. Our results also showed, unlike the positive control fluoxetine, Rb3, Rg3 and C-K significantly increased the NA levels in the brain regions of mice exposed to FST but did not affect the 5-HT and DA levels. Moreover, treatment with Rg3 could reverse swim stress-induced increased levels of serum ACTH and corticosterone. These results suggest that C-K and Rg3 are the active deglycosylated derivatives, especially the latter compound, which is more potent than Rb3 and exerts antidepressant-like effects by regulating NA, ACTH and corticosterone levels. © 2015 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations