Time filter

Source Type

Liu Q.,Guangdong Key Laboratory of New Technology in Rice Breeding | Liu Q.,Guangdong Academy of Agricultural Sciences | Yang T.,Guangdong Key Laboratory of New Technology in Rice Breeding | Yang T.,Guangdong Academy of Agricultural Sciences | And 13 more authors.
Frontiers in Plant Science | Year: 2017

Although, microRNAs (miRNAs) have been reported to be associated with heat tolerance at the seedling stage in rice, their involvement in heat tolerance at the flowering stage is still unknown. In this study, small RNA profiling was conducted in a heat-tolerant variety Gan-Xiang-Nuo (GXN) and a heat-sensitive variety Hua-Jing-Xian-74 (HJX), respectively. Totally, 102 miRNAs were differentially expressed (DE) under heat stress. Compared to HJX, GXN had more DE miRNAs and its DE miRNAs changed earlier under heat stress. Plant Ontology (PO) analysis of the target genes revealed that many DE miRNAs were involved in flower development. As a parallel experiment, QTL mapping was also conducted and four QTLs for heat tolerance at the flowering stage were identified using chromosome single-segment substitution lines derived from GXN and HJX. Further, through integrating analysis of DE miRNAs with QTLs, we identified 8 target genes corresponding to 26 miRNAs within the four QTL regions. Some meaningful target genes such as LOC_Os12g42400, SGT1, and pectinesterase were within the QTL regions. The negative correlation between miR169r-5p and its target gene LOC_Os12g42400 was confirmed under heat stress, and overexpression of miR169r-5p enhanced heat tolerance at flowering stage in rice. Our results demonstrate that the integrated analysis of genome-wide miRNA profiling with QTL mapping can facilitate identification of miRNAs and their target genes associated with the target traits and the limited candidates identified in this study offer an important source for further functional analysis and molecular breeding for heat tolerance in rice. © 2017 Liu, Yang, Yu, Zhang, Mao, Zhao, Wang, Dong and Liu.


Liu Q.,Guangdong Key Laboratory of New Technology in Rice Breeding | Liu Q.,Guangdong Academy of Agricultural Sciences | Yang J.,Guangdong Academy of Agricultural Sciences | Zhang S.,Guangdong Key Laboratory of New Technology in Rice Breeding | And 17 more authors.
Molecular Plant-Microbe Interactions | Year: 2016

Although 14-3-3 proteins have been reported to be involved in responses to biotic stresses in plants, their functions in rice blast, the most destructive disease in rice, are largely unknown. Only GF14e has been confirmed to negatively regulate leaf blast. We report that GF14b is highly expressed in seedlings and panicles during blast infection. Rice plants overexpressing GF14b show enhanced resistance to panicle blast but are susceptible to leaf blast. In contrast, GF14b-silenced plants show increased susceptibility to panicle blast but enhanced resistance to leaf blast. Yeast one-hybrid assays demonstrate that WRKY71 binds to the promoter of GF14b and modulates its expression. Overexpression of GF14b induces expression of jasmonic acid (JA) synthesis-related genes but suppresses expression of salicylic acid (SA) synthesis-related genes. In contrast, suppressed GF14b expression causes decreased expression of JA synthesis-related genes but activation of SA synthesis-related genes. These results suggest that GF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance, and that GF14b-mediated disease resistance is associated with the JA- And SA-dependent pathway. The different functions for 14-3-3 proteins in leaf and panicle blast provide new evidence that leaf and panicle blast resistance are controlled by different mechanisms. ©2016 The American Phytopathological Society.


Liu Q.,Guangdong Key Laboratory of New Technology in Rice Breeding | Liu Q.,Guangdong Academy of Agricultural Sciences | Yang J.,Guangdong Academy of Agricultural Sciences | Zhang S.,Guangdong Key Laboratory of New Technology in Rice Breeding | And 17 more authors.
Biochemical and Biophysical Research Communications | Year: 2016

Though GF14e has been reported to negatively regulate bacterial blight and sheath blight resistance in rice, its effect on panicle blast, the most destructive disease in rice is still unknown. In the present study, we identified that GF14e was highly expressed in panicles and was induced in panicles infected by blast pathogen. Overexpression of GF14e enhances resistance to panicle blast whereas silencing GF14e results in increased susceptibility to panicle blast, suggesting that GF14e plays a positive role in quantitative panicle blast resistance in rice. Our results also demonstrate that GF14e is regulated by WRKY71 and GF14e-mediated panicle blast resistance is related to activation of SA-dependent pathway and suppression of JA-dependent pathway. The functional confirmation of GF14e in panicle blast resistance makes it to be a promising target in molecular rice breeding. © 2016 Elsevier Inc. All rights reserved.


Liu Q.,Guangdong Academy of Agricultural Sciences | Liu Q.,Guangdong Key Laboratory of New Technology in Rice Breeding | Zhang S.,Guangdong Academy of Agricultural Sciences | Zhang S.,Guangdong Key Laboratory of New Technology in Rice Breeding | And 2 more authors.
Biochemical and Biophysical Research Communications | Year: 2016

14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. © 2016 Elsevier Inc.


Liu Q.,Guangdong Key Laboratory of New Technology in Rice Breeding | Liu Q.,Guangdong Academy of Agricultural Sciences | Yang J.,Guangdong Academy of Agricultural Sciences | Yan S.,Guangdong Academy of Agricultural Sciences | And 16 more authors.
Plant Molecular Biology | Year: 2016

Key message: This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Abstract: Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H2O2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to modulate disease resistance. Its good quantitative resistance to the two major diseases in rice makes it to be a promising target in rice breeding. © 2016 Springer Science+Business Media Dordrecht


Yang T.,Guangdong Academy of Agricultural Sciences | Yang T.,South China Agricultural University | Yang T.,Guangdong Key Laboratory of New Technology in Rice Breeding | Zhang S.,Guangdong Academy of Agricultural Sciences | And 16 more authors.
Molecular Breeding | Year: 2016

Cold stress is one of the main constraints in rice production, and damage from cold can occur at different developmental stages in rice. Understanding the genetic basis of cold tolerance is the key for breeding cold-tolerant variety. In this study, we used single segment substitution lines (SSSLs) derived from a cross between cold-tolerant japonica variety “Nan-yang-zhan” and a popular indica variety “Hua-jing-xian 74” to detect and pyramid QTLs for cold tolerance at the bud bursting and the seedling stages. Evaluation of cold tolerance of these SSSLs and their recurrent parent helped identify two cold-tolerant QTLs (qCTBB-5 and qCTBB-6) at the bud bursting stage and two cold-tolerant QTLs (qCTS-6 and qCTS-12) at the seedling stage. The SSSLs carrying these QTLs showed stronger cold tolerance than their recurrent parent HJX74 did in three independent experiments. The qCTBB-6 and qCTS-6 were mapped to the same chromosomal region. QTL pyramiding was performed by intercrossing of SSSLs carrying the respective QTLs for cold tolerance at the bud bursting stage and the seedling stage and marker-assisted selection (MAS). The selected pyramiding line SC1-1 with different cold-tolerant QTLs showed cumulative effects on cold tolerance. Our results suggest that different genes (QTLs) control cold tolerance at bud bursting and seedling stages, and pyramiding of stable expression QTLs for cold tolerance at different developmental stages through MAS is a good strategy to prevent cold damage in rice. © 2016, Springer Science+Business Media Dordrecht.


PubMed | Guangdong Key Laboratory of New Technology in Rice Breeding and Guangdong Academy of Agricultural Sciences
Type: Journal Article | Journal: Plant molecular biology | Year: 2016

This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H

Loading Guangdong Key Laboratory of New Technology in Rice Breeding collaborators
Loading Guangdong Key Laboratory of New Technology in Rice Breeding collaborators