Entity

Time filter

Source Type


Zhu C.,South China Agricultural University | Zhu C.,Guangdong Key Laboratory of Animal Breeding and Nutrition | Jiang Z.Y.,Guangdong Key Laboratory of Animal Breeding and Nutrition | Jiang S.Q.,Guangdong Key Laboratory of Animal Breeding and Nutrition | And 4 more authors.
Poultry Science | Year: 2012

This experiment was carried out to investigate effects of maternal ME and CP levels on growth performance, carcass traits, and meat quality of broiler offspring. A total of 1,134 thirty-week-old Chinese Yellow broiler breeders was randomly assigned to 3 dietary ME levels (11.09, 11.51, and 11.92 MJ/kg) and 3 CP levels (15.5, 16.5, and 17.5%) in a 3 × 3 factorial arrangement. Each dietary treatment had 6 replicates with 21 hens per replicate. At 39 wk of age, 30 settable eggs per replicate were selected for hatching. All broiler offspring were fed the same diets. There were significant ME × CP interactions in egg CP and ether extract (EE) contents, BW at d 1, 22 to 42 d ADG, ADFI during 1 to 21 d and 43 to 63 d, shear force, plasma albumin, cholesterol, and triglycerides contents of broiler offspring. Dietary ME at 11.92 MJ/kg increased average egg weight, egg EE content, and broiler 1-d-old BW compared with 11.09 MJ/kg group at 16.5%, 15.5%, and 17.5% CP levels, respectively (P < 0.05). Maternal 11.51 and 11.92 MJ/kg of ME increased 1 to 21-d ADFI, and 11.51 MJ/kg of ME decreased lightness (L*) value of broiler offspring compared with 11.09 MJ/kg group at 17.5 and 16.5% CP levels, respectively (P < 0.05). Broiler breeder dietary CP at 17.5% decreased egg EE content, increased average egg weight, egg CP content, BW at d 1, and 1 to 21-d ADFI of broiler offspring compared with 15.5% CP group at 11.92 MJ/ kg of ME level (P < 0.05). Maternal dietary 15.5% CP increased dressing percentage and decreased yellowness (b*) value of broiler offspring compared with 16.5% and 17.5% CP groups at 11.51 MJ/kg of ME level, respectively (P < 0.05). Collectively, the results indicate that maternal diets composed of 11.51 to 11.92 MJ/kg of ME and 17.5% CP at 39 wk of age increased growth performance during 1 to 21 d in Chinese Yellow broiler, whereas 11.51 MJ/kg of ME and 15.5% CP improved carcass dressing percentage and meat color of their offspring. © 2012 Poultry Science Association Inc. Source


Chen W.,Guangdong Academy of Agricultural Sciences | Chen W.,The Key Laboratory of Animal Nutrition and Feed Science South China of Ministry of Agriculture | Chen W.,State Key Laboratory of Livestock and Poultry Breeding | Chen W.,Guangdong Public Laboratory of Animal Breeding and Nutrition | And 21 more authors.
Food and Chemical Toxicology | Year: 2014

In order to explore the latter, the dose-response relationship of various concentrations of genistein on both cellular proliferation and the redox system were examined. The proliferation of primary muscle cells was promoted by a low concentration of genistein but was inhibited by high concentrations, which also enhanced lipid oxidation and suppressed membrane fluidity. By selecting a high concentration (200. μM) as a pro-oxidant treatment, the mechanism underlying the pro-oxidant function of genistein was then explored. The generation of intracellular reactive oxygen species (ROS) was stimulated by 200. μM genistein, with inhibited expression of NADPH oxidase 4 and cyclooxygenase 1 and 2 as well as increased activity of the glutathione redox system. The cellular expression of 5-lipoxygenase, however, was up-regulated by 200. μM genistein and the addition of 5-lipoxygenase inhibitor (Zileuton) decreased genistein-induced intracellular ROS level, close to that from the addition of the ROS scavenger, N-acetylcysteine. It is concluded that higher concentrations of genistein exert pro-oxidant potential in the primary muscle cells through enhancing ROS production in a 5-lipoxygenase-dependent manner. © 2014 Elsevier Ltd. Source


Ma X.,Guangdong Academy of Agricultural Sciences | Ma X.,The Key Laboratory of Animal Nutrition and Feed Science South China | Ma X.,State Key Laboratory of Livestock and Poultry Breeding | Ma X.,Guangdong Public Laboratory of Animal Breeding and Nutrition | And 26 more authors.
Genes and Nutrition | Year: 2016

Background: The mechanism of db-cAMP regulating fat deposition and improving lean percentage is unclear and needs to be further studied. Methods: Eighteen 100-day-old Duroc × Landrance × Large White barrows (49.75 ± 0.75 kg) were used for experiment 1, and 15 eighteen 135-day-old barrows (78.34 ± 1.22 kg) were used for experiment 2 to investigate the effects of dietary dibutyryl-cAMP (db-cAMP) on fat deposition in finishing pigs. Pigs were fed with a corn-soybean meal-based diet supplemented with 0 or 15 mg/kg db-cAMP, and both experiments lasted 35 days, respectively. Results: The results showed that db-cAMP decreased the backfat thickness, backfat percentage, and diameter of backfat cells without changing the growth performance or carcass characteristics in both experiments, and this effect was more marked in experiment 1 than in experiment 2; db-cAMP enhanced the activity of the growth hormone- insulin-like growth factor-1 (GH-IGF-1) axis and pro-opiomelanocortin (POMC) system in both experiments, which suppressed the accumulation of backfat deposition; microarray analysis showed that db-cAMP suppressed the inflammatory system within the adipose tissue related to insulin sensitivity, which also reduced fat synthesis. Conclusions: In summary, the effect of db-cAMP on suppressing fat synthesis and accumulation is better in the earlier phase than in the later phase of finishing pigs, and db-cAMP plays this function by increasing the activity of the GH-IGF-1 axis and POMC system, while decreasing the inflammatory system within the adipose tissue related to insulin sensitive or lipolysis. © 2016 The Author(s). Source


Chen W.,Guangdong Academy of Agricultural Sciences | Chen W.,State Key Laboratory of Livestock and Poultry Breeding | Chen W.,Key Laboratory of Animal Nutrition and Feed Science in South China | Chen W.,Ministry of Agriculture Guangdong Public Laboratory of Animal Breeding and Nutrition | And 41 more authors.
Journal of Experimental Biology | Year: 2015

The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-Adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-Adequate diet for an additional 67 days (repletion period). Compared with the calcium-Adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (P<0.05) during the depletion period, accompanied by reduced tibia quality. The mRNA expression of both secreted phosphoprotein 1 (SPP1) and carbonic anhydrase 2 (CA2) in the uterus was decreased after feeding calcium-deficient diets (1.8% or 0.38% calcium). mRNA transcripts of calbindin 1 (CALB1), an important protein responsible for calcium transport, and the matrix protein genes ovocalyxin-32 (OCX-32) and ovocleidin-116 (OC-116) were reduced in ducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calciumdeficient diets (P<0.05). The impaired shell quality and suppressed functional proteins involved in shell formation could be reversed by repletion of dietary calcium. The results of the present study suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd. Source

Discover hidden collaborations