Entity

Time filter

Source Type


Li T.,Guangdong Academy of Agricultural Sciences | Li T.,Guangdong Key Laboratory for New Technology Research of Vegetables | Xu X.,Guangdong Academy of Agricultural Sciences | Xu X.,Guangdong Key Laboratory for New Technology Research of Vegetables | And 3 more authors.
Journal of Plant Biology | Year: 2015

Heat stress is an important agricultural problem around the world. In pepper (Capsicum annum L.), heat stress seriously affects pollination and yield. However, to date, the molecular basis of heat stress has not been extensively studied. Using the HiSeq™ 2000 sequencing platform, the seedling transcriptome of heat-susceptible C.annuum ‘S590’(CaS) and heat-tolerant ‘R597’ (CaR) under the heat stress was examined. Over five million clean reads were generated from each library, each corresponding to a coverage of >250,000 nt. About 73% of the reads were mapped to the pepper genome, and 3,799 and 4,010 differentially expressed genes (DEGs) were identified in ‘R597’ (CaR) and ‘S590’(CaS), respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses determined that the identified DEGs were involved in heat shock protein, heat shock transcription factors, hormone, as well as calcium and kinase signaling. Further validation identified 35 genes that were involved in stress response, and that most of the heat shock proteins were upregulated in two genotypes, and highly expressed in susceptible S590 than in tolerant cultivar R597; the transcription factors and hormone signaling genes showed higher levels of expression in the heat-tolerant cultivar R597 than that observed in the heat-susceptible S590. These findings facilitate in better understanding of the molecular mechanism underlying heat stress in different pepper genotypes. © 2015, Korean Society of Plant Biologists and Springer-Verlag Berlin Heidelberg. Source


Wang R.,Guangdong Academy of Agricultural Sciences | Wang R.,Guangdong Key Laboratory for New Technology Research of Vegetables | Huang H.,Guangdong Academy of Agricultural Sciences | Lin Y.,Guangdong Academy of Agricultural Sciences | And 4 more authors.
Canadian Journal of Plant Science | Year: 2014

Dm1, a dwarf mutant from Cucurbita maxima (Duch. ex Lam) by natural mutation, showed distinct dwarf phenotypes such as shorter vines and fewer and shorter internodes. Genetic analysis indicated that the dm1 mutation was recessive, and the dwarfing character was controlled by a single locus. DNA-AFLP analysis showed that a fragment (MCAG/ETT) was linked with the dwarfing character of dm1 and that the fragment contained 152 base pairs (bp). It was investigated in F2 populations of dm1 and vine plants, and the genetic distance between the MCAG/ETT fragment and dwarf gene in dm1 was 11.2 cM, calculated by JoinMap 3.0 software. In addition, the result of cDNA-AFLP analysis showed that there were 52 differential transcript derived fragments (TDFs) found between dm1 and vine plants. Only four TDFs, A16T12, A16T9, A6T14 and A6T16, were expressed stably and specifically in dm1 plants in subsequent investigation. The four fragments share 71, 79, 87 and 79% nucleic acid sequence similarity with the complete coding sequence of Arabidopsis thaliana histidine kinase 3 (AHK3) mRNA, nucleic acid sequence of Vitis vinifera dihydroflavonol-4-reductase-like (DFRL), nucleic acid sequence of Glycine max histone-lysine N-methyltransferase ATX4-like and nucleic acid sequence of Arabidopsis thaliana histidinol dehydrogenase (HDH), respectively. Bioinformatics analysis indicated that AHK3, DFRL and HDH were respectively related to Cytokinin signaling, indole acetic acid signaling and Ni accumulation, which played important roles in plant growth, so the expression of the four TDFs may contribute to form dwarfism in dm1. Source


Li T.,Guangdong Academy of Agricultural Sciences | Li T.,Guangdong Key Laboratory for New Technology Research of Vegetables | Wang H.-M.,Guangdong Academy of Agricultural Sciences | Li Z.-L.,Guangdong Academy of Agricultural Sciences | And 2 more authors.
International Journal Bioautomation | Year: 2015

Heterosis has been mostly used in hot pepper breeding and production, but the molecular basis of heterosis has not been extensively studied. In this study, comparative transcriptomes analysis of parental lines (D6, D7) and F1 hybrids (D6×D7 and D7×D6) was performed. A total of 0.6 billion raw reads, and 0.44 billion high-quality reads were obtained after the filtering process. Statistical analysis of genes with presence/deletion variations showed that, there were 1068 (6.20%) and 780 (4.56%) genes in the single parent express consistent type in the direct (D6×D7) and reciprocal (D7×D6) F1 hybrids, respectively. More genes fit into the non-additive expression type in two F1 hybrids compared to the parents, and less than 8% of the genes belong to the additive expression type. 66.08% in direct and 62.96% in reciprocal F1 hybrids belong to the epistatic dominance expression pattern. There were more differentially expressed genes (DEGs) between the two parental lines (351) than between the two hybrids (17). The results of gene ontology (GO) analysis showed that there were obvious differences in electron transmission and photorespiration between two F1 hybrids. GO terms for regulating plant hypersensitive responses, and MAPK pathways were only enriched in the direct hybrid (D6×D7). Source


Xu X.-W.,Guangdong Academy of Agricultural Sciences | Xu X.-W.,Guangdong Key Laboratory for New Technology Research of Vegetables | Li T.,Guangdong Academy of Agricultural Sciences | Li T.,Guangdong Key Laboratory for New Technology Research of Vegetables | And 2 more authors.
International Journal Bioautomation | Year: 2015

MicroRNAs (miRNAs) play an important role in many developmental processes and stress responses in plants. In this study, tolerant hot pepper cultivar 'R597' (CaR) and sensitive cultivar 'S590' (CaS) were used to detected differentially expressed miRNAs under high temperatures and high air humidity. The length distribution of obtained small RNAs was significantly different between libraries. There were a total of 71 miRNA families identified in two genotypes, and 24 conserved miRNA families were detected in all four sRNA libraries. MIR166, MIR156/157, MIR167, MIR168, MIR2118, and MIR5301 were highly expressed in four libraries, and 93 miRNAs had a species-specific expression. Among them, 60 miRNAs were preferentially expressed in S590 leaves and 33 miRNAs were preferentially expressed in R597 leaves. Mostly miRNAs were less-conserved miRNAs. The most abundant miRNAs with different expressions between two pepper species was miR6149b, which exhibited a high level (read count 42,443) in CaSCK but no expressed in CaRCK. We found 650 (CaRCK), 1054 (CaRHH), 914 (CaSCK), 1045 (CaSHH) potential targets for 92 (CaRCK), 124 (CaRHH), 128 (CaSCK), 117 (CaSHH) hot pepper miRNAs, respectively. These findings facilitate in better understanding of the molecular mechanism underlying high temperature and high air humidity condition in different pepper genotypes. Source


Li T.,Guangdong Academy of Agricultural Sciences | Li T.,Guangdong Key Laboratory for New Technology Research of Vegetables | Shao X.-X.,Guangdong Academy of Agricultural Sciences | Shao X.-X.,Guangdong Key Laboratory for New Technology Research of Vegetables | And 5 more authors.
International Journal Bioautomation | Year: 2015

Activity of bc1 complex (ABC1K) is a protein kinase commonly found in eukaryotes and prokaryotes. It plays an important role in various developmental and physiological processes, especially critical for plant response to diverse biotic and abiotic stresses. In this study, a genome analysis was carried out and 18 genes of ABC1K family were identified in tomato. Phylogenetic results showed that these members could be classified into three groups ? ancestral clade, mitochondrial clade and photosyntheticspecific clade, with several subgroups based on subcellular location prediction by WoLF PSORT and all the SlABC1K proteins contained an ABC1K conserved kinase motifs-VAIK (VAVK, VAMK) and DFG (DEG). Conserved motifs analyzed by MEME program indicated that all ABC1K protein contains motif 2, 5, 6 and 8. Predictably, the SlABC1K proteins were localized in chloroplasts or mitochondria; in our analysis of expression patterns, SlABC1K genes could be detected in all tomato organs, and eight genes were specifically expressed in tomato leaf, which implied that the SlABC1Ks might be involved in energy metabolism in tomato. The expression of several genes was significantly changed under abiotic stress, implying their probability of performing various roles in abiotic stresses (NaCl, high temperature, cold, abscisic acid and salicylic acid). Source

Discover hidden collaborations