Time filter

Source Type

Huancayo, Peru

Parsa S.,Aereo | Parsa S.,University of California at Davis | Ccanto R.,Grupo Yanapai | Rosenheim J.A.,University of California at Davis
Ecological Applications | Year: 2011

Modern restructuring of agricultural landscapes, due to the expansion of monocultures and the resulting elimination of non-crop habitat, is routinely blamed for rising populations of agricultural insect pests. However, landscape studies demonstrating a positive correlation between pest densities and the spatial extent of crop monocultures are rare. We test this hypothesis with a data set from 140 subsistence farms in the Andes and find the inverse correlation. Infestations by the Andean potato weevil (Premnotrypes spp.), the most important pest in Andean potato agriculture, decrease with increasing amounts of potato in the landscape. A statistical model predicts that aggregating potato fields may outperform the management of Andean potato weevils by IPM and chemical control. We speculate that the strong pest suppression generated by aggregating potato fields may partly explain why indigenous potato farmers cluster their potato fields under a traditional rotation system common in Andean agriculture (i.e., "sectoral fallow"). Our results suggest that some agricultural pests may also respond negatively to the expansion of monocultures, and that manipulating the spatial arrangement of host crops may offer an important tool for some IPM programs. © 2011 by the Ecological Society of America. Source

Parsa S.,Ciat Centro Internacional Of Agricultura Tropical | Parsa S.,University of California at Davis | Ccanto R.,Grupo Yanapai | Olivera E.,Grupo Yanapai | And 3 more authors.
PLoS ONE | Year: 2012

Background: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. Methodology/Principal Findings: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. Conclusions/Significance: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives. © 2012 Parsa et al. Source

de Haan S.,International Potato Center | Burgos G.,International Potato Center | Arcos J.,Instituto Nacional Of Innovacion Agraria Inia | Ccanto R.,Grupo Yanapai | And 3 more authors.
Economic Botany | Year: 2010

Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Farmers in the high Andes of central to southern Peru and Bolivia typically freeze-dry potatoes to obtain chuño. Processing of so-called black chuño follows tending, treading, freezing, and drying. The making of white chuño is generally more complex and involves exposure of tubers to water. Regional variants exist for each of these processes, yet their influence on the nutritional composition of native potato cultivars is little known. Tubers belonging to four distinct cultivars and produced in a replicated trial under uniform conditions were processed into four types of chuño following standard traditional procedures (farmer-managed). These regional variants were documented, and the dry matter, iron, zinc, calcium, potassium, phosphorus, magnesium, and sodium content of the four resulting different types of boiled chuño determined at the International Potato Center's Quality and Nutrition Laboratory (Lima, Peru). Content values were compared with those of boiled (unprocessed) tubers from the same experiment. Regional variants of processing are to a large extent determined by tradition, environmental condition, and market demand. The zinc, potassium, phosphorus, and magnesium content of all types of chuño decreases in comparison with unprocessed tubers. Concentrations of these same minerals decrease more drastically for white as compared to black chuño. The effect of the four regional variants of freeze-drying on the dry matter, iron, calcium, and sodium content of chuño differs by process and/or cultivar. © 2010 The New York Botanical Garden. Source

De Haan S.,International Potato Center | Burgos G.,International Potato Center | Ccanto R.,Grupo Yanapai | Arcos J.,Instituto Nacional Of Innovacion Agraria Inia | And 3 more authors.
Journal of the Science of Food and Agriculture | Year: 2012

Background: Variables and interaction effects affecting the mineral concentration of Andean bitter potatoes converted into so-called white chuño are unknown. We report on the effect of three contrasting production environments (E) on the dry matter (DM), zinc, iron, calcium, potassium, magnesium, phosphorus and sodium concentration of four potato native bitter genotypes (G) processed (P) into two different 'types' of white chuño. Results: The DM content and iron, calcium, magnesium and sodium concentration of white chuño are significantly dependent on E, G, P, and E × G × P interaction (predominantly at P < 0.01). In particular, the DM content and calcium concentration are influenced by all variables and possible interaction effects. The zinc and potassium concentration are not significantly dependent on E × G, G × P or E × G × P interaction effects, while the phosphorus concentration is not significantly affected by the G × P or E × G × P interaction effect. Zinc, phosphorus and magnesium concentrations decrease in the ranges of 48.3-81.5%, 61.2-73.0% and 62.0-89.7% respectively. The decrease in potassium is particularly severe, with 122- to 330-fold losses. Iron and calcium increase by 11.2-45.6% and 74.5-714.9% respectively. Conclusion: E, G, P, and various interaction effects influence the mineral concentration of traditionally processed tubers. We speculate that mineral losses are caused by leaching, while increases of iron and calcium are a likely result of absorption. © 2012 Society of Chemical Industry. Source

Discover hidden collaborations