Time filter

Source Type

Vergnes J.-P.,Groupe dEtude de lAtmosphere Meteorologique GAME | Decharme B.,Groupe dEtude de lAtmosphere Meteorologique GAME
Hydrology and Earth System Sciences | Year: 2012

Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP) river routing model is applied in off-line mode at global scale using a 0.5 model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC) and other sources, while the terrestrial water storage (TWS) variations derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage) come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA) land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data. © Author(s) 2012. Source

Szczypta C.,Groupe dEtude de lAtmosphere Meteorologique GAME | Decharme B.,Groupe dEtude de lAtmosphere Meteorologique GAME | Carrer D.,Groupe dEtude de lAtmosphere Meteorologique GAME | Calvet J.-C.,Groupe dEtude de lAtmosphere Meteorologique GAME | And 4 more authors.
Hydrology and Earth System Sciences | Year: 2012

This study investigates the impact on river discharge simulations of errors in the precipitation forcing, together with changes in the representation of vegetation variables and of plant transpiration. The most recent European Centre for Medium-Range Weather Forecasts reanalysis (ERA-Interim) is used to drive the Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system over Europe and the Mediterranean basin over the 1991-2008 period. As ERA-Interim tends to underestimate precipitation, a number of precipitation corrections are proposed. In particular, the monthly Global Precipitation Climatology Centre (GPCC) precipitation product is used to bias-correct the 3-hourly ERA-Interim estimates. This correction markedly improves the match between the ISBA-TRIP simulations and the river discharge observations from the Global Runoff Data Centre (GRDC), at 150 gauging stations. The impact on TRIP river discharge simulations of various representations of the evapotranspiration in the ISBA land surface model is investigated as well: ISBA is used together with its upgraded carbon flux version (ISBA-A-gs). The latter is either driven by the satellite-derived climatology of the Leaf Area Index (LAI) used by ISBA, or performs prognostic LAI simulations. The ISBA-A-gs model, with or without dynamically simulated LAI, allows a better representation of river discharge at low water levels. On the other hand, ISBA-A-gs does not perform as well as the original ISBA model at springtime. © 2012 Author(s). Source

Discover hidden collaborations